The Application of Elemental Fluorine in Organic Synthesis

SUZANNE T. PURRINGTON* and BRADLEY S. KAGEN

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

TIMOTHY B. PATRICK

Department of Chemistry, Southern Illinois University, Edwardsville, Illinois 62026-1001

Received May 2, 1986 (Revised Manuscript Received July 11, 1986)

Contents

I.	Introduction	997
II.	Addition of Fluorine to π Bonds	997
	A. C=C	997
	1. Alkenes	997
	2. Heterocycles	998
	3. Enol Derivatives	1000
	B. C==C	1001
	C. C=N	1002
	1. Imines	1002
	2. Diazo and Related Compounds	1002
III.	Nitrogen Derivatives	1002
	A. Isocyanates	1002
	B. Isonitriles	1003
	C. Amides	1003
IV.	Substitution at Unactivated C-H Positions	1003
٧.	Electrophilic Aromatic Substitution	1005
	 A. Evaluation of F⁺ as a Reactive Intermediate 	1005
	B. Reaction of Aromatic Substrates	1005
VI.	Metathetical Reactions	1007
VII.	Preparation of Commercially Unavailable Fluorinating Reagents	1007
	A. Organo Fluoroxy Compounds	1007
	1. Acyl Hypofluorites	1007
	2. Fluoroxysulfate Salts	1012
	B. N-Fluoro Compounds	1015
	C. Halogen Monofluorides	1015
VIII.	Conclusion	1015

I. Introduction

In commemoration of the 100th anniversary of Moissan's discovery of fluorine gas, and with the ever growing interest in fluorinated organic molecules for biomedical applications, a review of the methods of fluorination in organic synthesis is appropriate. Much has been accomplished since Bockemuller first showed the potentially selective nature of fluorine as demonstrated in his fluorination of aliphatic carboxylic acids. Since that time, many new selectively fluorinated organic molecules have been made available from ele-

mental fluorine, including some that are useful intermediates in the synthesis of other non-fluorinated compounds.³

There have been a number of publications that deal in part with selective fluorination using elemental fluorine,⁴⁻¹¹ but since 1961⁸ there have been no comprehensive compilations. This paper will concentrate on the more recent developments. The direct fluorination of ureas, carbamates, amines, nitro compounds, carboxylate salts, anhydrides,⁴ and the commercially unavailable halogen monofluorides¹² have been previously reviewed and will be updated accordingly. Perfluorination reactions, although at times synthetically useful, are too broad a subject and are best left to a separate review.

Until the 1960's, elemental fluorine had been considered too reactive and dangerous to be practical for the fluorination of organic molecules. Fluorine is such a strong oxidizing agent that it reacts with almost any organic compound, usually exothermically, and often with explosive results.⁴ The poor solubility of fluorine results in reactions that proceed at the liquid-gas interface.¹³ This behavior, coupled with the exothermic nature of the reaction, allows localized hot spots to form which can promote unwanted side reactions.¹⁴ To minimize this effect, solutions of fluorine diluted with inert gases such as nitrogen or argon are usually employed to provide more control and selectivity. 15 Synthetic applications have greatly increased with the commercial availability of these diluted solutions and also with the development of various moderating agents.

II. Addition of Fluorine to π Bonds

A. C=C

1. Alkenes

The addition of fluorine to various alkenes is summarized in Table I. Under appropriate reaction conditions, elemental fluorine exhibits reactions that are associated with electrophilic processes 16 in which substrates act as nucleophiles towards fluorine. Merritt $^{17-20}$ first recognized the electrophilic nature of \mathbf{F}_2 in his investigation of the addition to alkenes. Fluorination of cis-stilbene with 1 equiv of \mathbf{F}_2 at low pressure and temperature in fluorocarbon solvents resulted in products which show that the syn mode of addition predominated. Merritt 18 ruled out a free-radical pathway

Suzanne T. Purrington was born in New York City. She received her Ph.D. under the direction of Professor Paul D. Barlett at Harvard University in 1963. She joined the faculty at North Carolina State University in 1978. Her current research interests are in the area of development of selective fluorination procedures. Gardening is her main leisure-time activity.

Bradley S. Kagen was born in 1958 and received his B.S. in chemistry from West Virginia State College in May of 1980. He worked for the Union Carbide corporation as a research assistant until June of 1984. Currently, Brad is working towards a master's degree in chemistry at North Carolina State University and plans to open his own business after graduation. His hobbies include song writing, guitar, chess, and all sports.

Dr. Timothy B. Patrick was born in Huntington, WV. He was educated in the public and state school systems, attending Marshall University (B.S.) and West Virginia University (Ph.D.). Following postdoctoral studies at Ohio State University, he joined the faculty at Southern Illinois University at Edwardsville where he is presently a full professor. His research interests are in synthetic and biological organofluorine chemistry, new synthetic methodology, and nuclear magnetic resonance spectroscopy. His hobbies include reading, sports, and business.

based on the observed selectivity and the reaction conditions and proposed a concerted pathway to account for the experimental observations. However, a mechanism that proceeds by way of a tight ion pair, SCHEME I

such as that proposed for acetyl hypofluorite²¹ and fluoroxytrifluoromethane²² additions, is more reasonable (Scheme I). The unstable α -fluoro carbocation gives rise to the vinyl fluoride (2) by loss of a proton or adds fluoride to give the vicinal difluoride (1). The vinyl fluoride was the precursor to the trifluoro products (3) observed (entries 2, 5, 6, and 13), as shown by the further fluorination of 1,1-diphenyl-2-fluoroethylene (entry 3). Propenylbenzenes (entries 5 and 6), which would lead to a less stabilized intermediate than the other compounds studied, produced the smallest amount of the trifluoride.²⁰ Further support for the mechanism is found in the fluorination of trans-1phenylpropene in methanol at -78 °C²⁰ which gave 44% threo and 7% erythro difluoro adducts. In addition, a 49% mixture of the solvent incorporated erythro- and threo-1-methoxy-1-phenyl-2-fluoropropanes was observed (eq 1). Under the same conditions, cis-1-

phenylpropene gave 12% threo and 38% erythro adducts and 50% of the ethers.

Direct addition of fluorine to steroidal olefins has also been studied^{19,23} (entries 7–10). The 16α -fluoro- 17β methyl adduct of entry 8 was assumed to be formed by Kagi-Miescher rearrangement.²³ The vicinal product of entry 8, the 16α , 17α -difluoro adduct, displayed the expected syn addition of fluorine to the double bond. Addition was directed to the α face of the substrate because of the sterically hindered nature of the β face.

2. Heterocycles

Generally, CFCl₃ is the solvent of choice for many selective fluorinations; however solubility sometimes proves to be a problem. Purines and pyrimidines exhibit poor solubility in CFCl₃ and require an alternative solvent. Acetic acid has been found to be an ideal solvent, although on occasion other solvents such as methylene chloride, 25 hydrofluoric acid, 26 water, 27 and pyridine²⁸ have been used. The latter solvents give lower product yields and are not generally employed. However, in the case of 2-pyrimidinone a 38% yield of the 5-fluoro adduct was formed in liquid HF whereas only 5-10% was obtained in acetic acid.²⁶

The isoquinoline ring system could not be fluorinated, but fluorination of the related 2-methylisocarbostyril

TABLE I. Addition of Fluorine to Alkenes in Freon

entry	substrate	product	% yield	ref
1	trans-EtOCOCH=CHCO ₂ Et	EtOCOCHFCHFCO ₂ Et	<10	24
2	$Ph_2C=CH_2$	$Ph_{\circ}CFCH_{\circ}F$	14	18
		$Ph_2C=CHF$	78	
		Ph_2CFCHF_2	8	
3	Ph_2C =CHF	$Ph_2^{-}CFCHF_2^{-}$	93	18
4	cis-PhCH=CHPh	meso-PhCHFCHFPh	79	18
		$dl ext{-PhCHFCHFPh}$	16	
5	$trans$ -PhCH=CHCH $_3$	PhCHFCHFCH ₃	80-90	20
		erythro:threo 31:69		
		PhCHFCF ₂ CH ₃	<3	
6	cis -PhCH==CHCH $_3$	PhCHFCHFCH ₃	80-90	20
		erythro:threo 78:22		
		$PhCHFCF_2CH_3$	<3	
7	>	\	60-70	19
		_ ,		
	Ť	į į		
		Ţ.		
8		₩	40	20
	0	F		
		↓		
		424 Y		
		MAN I		
	ſ Ť Ť ĥ	- 9	12	
	Aco		12	
	ĊI I)mF		
		1/2		
		Mary H		
9	QAc .	OAc	10	23
3	ζ		10	20
		, <u>F</u> °		
		IIIIF		
	Ĭ Ì Ĥ	H H		
	0	-4		
10	. 8	Mr.	10^a	23
		- The state of the		
		05 X F		
	0	F		
11			43	17
		СН₃	40	11
	CH ₃	~		
	-	\ _F F		
		(cis and trans)		
12			32	17
-~			02	11
	~ ~	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
		F		
13		F		
		1 1		
		()		
	•			
		trans	11	
		trans cis	11 35	17
		FF ₂		
	011			
14	CH ₈	FF	20	17
		⊥ CH₃		
	[O[O]	(0)(0)		
		•		
In CF ₃ CH ₂ OH.				

(4) was successful.²⁹ In acetic acid, a 54% yield of the 4-fluoro compound was isolated as shown in eq 2.

$$\begin{array}{c|c} & F_{2}/Ar \\ \hline \\ O \\ \hline \\ O \\ \end{array}$$
 CH₃ $\begin{array}{c} F_{2}/Ar \\ \hline \\ O \\ \end{array}$ CH₃ (2)

Similarly, 1-methyl-5-fluoro-2-pyridone was prepared in 43% yield from 1-methyl-2-pyridone.²⁹

A nitrogen-diluted solution of fluorine reacted with pyrimidines for the synthesis of 5-fluorouracil, 6-fluorothymine, and many other important biochemical derivatives. ^{25-28,30-41} In the synthesis of 5-fluorouracil, Cech²⁵ proposed that the reaction was initiated by syn addition of fluorine across the double bond, followed by solvent assisted elimination of F⁻. In acetic acid, an unstable acetoxy intermediate (5) is formed in this manner (eq 3). The addition of an alcohol to the re-

action mixture, both prior to and after the evaporation of solvent, gave the corresponding stable 5-fluoro-6-alkoxy-5,6-dihydrouracil derivative (6). NMR experiments and a crystal structure show that the orientation of the fluorine is cis with respect to the alkoxy group. The alkoxy derivatives can be readily transformed to 5-fluorouracil (7) as indicated in eq 3. Yields for the fluorination of a number of substrates ranged from 50% to quantitative. Recently, Visser et al. have investigated the products of the reaction of F_2 and acetyl hypofluorite with cytosine as well as uracil using ^{18}F as a tracer. In addition, many nucleosides of uracil derivatives have been fluorinated in the same manner with high yields. 25,28,31,32,34,40

Antipyrine (8), a lipophilic compound that has been shown to have a high uptake by the brain, can be selectively fluorinated in an aqueous medium²⁷ or in glacial acetic acid to give the 4-fluoro derivative (9).⁴³ The preparation of its radiolabeled fluorinated analogue is expected to serve as a means for measurement of regional cerebral blood flow.⁴³ In glacial acetic acid significant amounts of the 4,4-difluoro adduct (10)⁴⁴

SCHEME II

were also formed, increasing with increased fluorine to substrate ratios (eq 4). In a related reaction, fluorination of 3-carbomethoxypyrazole (11) with fluorine in acetic acid at 20 °C led to the formation of 4-fluoro-3-carbomethoxypyrazole (12) in 75% yield based on a 20% conversion of the starting material (eq 5).⁴⁵

3. Enol Derivatives

In an attempt to prepare α -fluorocarbonyl compounds, a number of enol derivatives have been fluorinated; the results are compiled in Table II. For example, fluorination of the enolized 3-substituted pyruvate esters with 10% fluorine in nitrogen (entries 2–6), gave the α -fluorinated ketone derivatives in yields as high as 70%. Attempts to fluorinate the related free acid, sodium salt, and trimethylsilyl enol ether (entry 7) were unsuccessful. ⁴⁶ Direct fluorination of unenolized pyruvates was also unsuccessful and yielded complex product mixtures. ⁴⁶

Purrington et al.⁴⁷ were able to prepare a number of α -fluoroaldehydes and ketones (entries 8–17) from trimethylsilyl derivatives in relatively short reaction times (3.5 h). The reactions were run in CFCl₃ with 5% fluorine in nitrogen at –78 °C. The silylated enol of the substrate readily lost innocuous, volatile trimethylsilyl fluoride to give the α -substituted product. The reaction may proceed via a six-membered cyclic transition state as shown in Scheme II.

Silyl enol ethers of methyl ketones tended to give overfluorinated products and required shorter reaction times (2 h) as well as ultrapure silyl enol ether to obtain the monosubstituted product.⁴⁷ Fluorination of silyl ketene acetals (entry 19) has also been performed.⁴⁸

Direct fluorination of enol acetates has not proven to be a good route to α -fluorocarbonyl compounds. Rozen⁴⁹ reported that this reaction gave complex mixtures with no definite isolatable products. However, the simplest case, vinyl acetate²⁴ gave a 12.5% yield of α -fluoroacetaldehyde after hydrolysis (entry 1).

The addition of elemental fluorine to double bonds has found applications in many other areas of organic chemistry, including the synthesis of modified carbohydrates. Fowler et al. have observed the syn addition of fluorine (2.5% in argon) to 3,4,6-tri-O-acetyl glucal, in CFCl₃ at -78 °C for the preparation of 1,2-difluorides (entry 18). When the fluorination was performed in acetic acid, 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro- α -D-glucopyranosyl acetate was also formed. Leoxy-2-[18F] fluoro-D-glucose (14), a compound that is used as a tracer for glucose metabolism in man, has

TABLE II. Addition of Fluorine to Enol Derivatives

entry	substrate	product	% yield	ref
		<u></u>		
1	CH_2 = $CHOCOCH_3$	CH₂FCHFOCOCH₃° }	20	24
	DOLL GUOLD GO D	CH ₂ FCHO ^a		
	$R_2CH = C(OH)CO_2R_1$	$R_2CHFCOCO_2R_1$	40	
2	$R_1 = Et$, $R_2 = Ph$	$R_1 = Et, R_2 = Ph$	40	46
3	$R_1 = Me, R_2$		50-60	46
4	$\mathbf{R}_1 = \mathbf{M}\mathbf{e}, \mathbf{R}_2$		65	46
5	$\mathbf{R}_1 = \mathbf{E}\mathbf{t}, \mathbf{R}_2$		46	46
6	$R_1 = \text{Et}, R_2$		70	46
7	PhCH=C(OSiMe ₃)CO ₂ CH ₃	PhCHFCOCO ₂ CH ₃	0	46
8	PhCH=CHOSiMe ₃	PhCHFCHO	72	47
9	CH ₃ (CH ₂) ₄ CH=CHOSiMe ₃	CH ₃ (CH ₂) ₄ CHFCHO	70	47
10	PhC(CH ₃)=CHOSiMe ₃	PhCF(CH ₃)CHO	52	47
11	Ph ₂ C=CHOSiMe ₃	Ph ₂ CFCHO	57	47
12	PhCH ₂ CH=CHOSiMe ₃	PhCH ₂ CHFCHO	70	47
13	$PhC(OSiMe_3) = CHCH_3$	$PhCOCHFCH_3$	59	47
14	OSiMe ₃	o	78	47
		F		
15	OSiMe ₃	0	73	47
16	$PhC(OSiMe_3) = CH_2$	$PhCOCH_2F$	61	47
17	$PhCH=C(OSiMe_3)Ph$	PhCHFCOPh	64	47
18	CH₂OAc	ÇH₂OAc	40^{b}	50
10	, , ,	0	10	00
	OAC	ACO F		
	AcO T	AGO - F		
		ÇH ₂ OAc	26	
		0 5	40	
		ACO OAC F		
19	PhCH=C(OEt)OSiMe ₃	PhCHFCO ₂ Et	71	48
ous workup. b	In acetic acid, CH2OAc is also f	formed (ref 51).		
-				
	ACO OAC			

been prepared by acid hydrolysis of the difluoride (13) in approximately 20% overall yield, (eq 6).⁵⁰ When

using $^{18}F_2$, an 8% radiochemical yield of 14 was obtained in only 110 minutes, a time equivalent to the half-life of $^{18}F.^{54}$

в. с≡с

Addition of elemental fluorine to alkynes at -78 °C under the conditions used for the olefin addition reactions $^{17-19}$ gave various products depending on the nature of the solvent used. When CFCl₃ (or Freon 11) was employed, the acetylenic compounds were tetrafluorinated. Reducing the amount of fluorine to less than a stoichiometric amount did not produce any difluoro adduct. However, the reaction of substituted tolanes with fluorine produced complex product mixtures including cis- and trans- α , α' -difluorostilbenes. Rearrangement products including 1,2,2-trifluoro-1,2-diarylethanes, 1,2,2,2-tetrafluoro-1,1-diarylethanes, and 1,1-difluoro-2,2-diarylethenes were observed. Although

the 1,1,2,2-tetrafluoroethanes were the major products at -78 °C, the others predominated at 0 °C. McEwen and co-workers⁵⁶ believe that the reaction proceeds by way of a fluorovinyl radical with a partial positive charge on carbon based on product distribution, a small negative ρ , and inhibition of fluorination by oxygen.

Merritt⁵⁵ observed a number of products when the fluorination was run in methanol. 1-Phenyl-1-propyne (15) gave the trifluoro ether (16, 57%) and the dimethyl ketal (17, 20%) as well as the tetrafluoro adduct (18, 23%) (eq 7). The products from solvent incorporation,

where the alkoxy group(s) substituted only at the position that would support a positive charge demonstrates the polar nature of the addition. Compounds of types 16 and 17 were readily hydrolyzed with a 10% solution of sulfuric acid at 50 °C to give α , α -difluoro ketones.

TABLE III. Geminal Fluorination of Diazo Compounds

entry	substrate	product(s)	% yield	ref	
1	$t ext{-BuCOCN}_2 ext{H}$	t-BuCOCHF ₂	14-15	59	
2	N ₂	7 3	low	59	
3	$Ph_2C=N_2$	$\mathrm{Ph_2CF}_2$	71	58	
4	O V		88	58	
5	N ₂	٥٠٠	80	58	
6			94	58	
7 8	$\begin{array}{c} {\rm PhCOCN_2Ph} \\ {\rm (EtOCO)_2C} {\color{red} = -} {\rm N_2} \end{array}$	$PhCOCF_2Ph$ $(EtOCO)_2CF_2$	79	58	
	$(EtOCO)_2C=N_2$	$({ m EtOCO})_2{ m CF}_2$	70	58	
9	N ₂	, F	65	58	
10	HO	но	31	11	

C. C=N

1. Imines

The low-temperature fluorination of benzaldehyde imines with elemental fluorine gave α , α -difluoro secondary fluoramines and α -fluoramines, as shown in eq 8.⁵⁷ An electrophilic process was postulated for the

PhCH=NR
$$\xrightarrow{F_2}$$
 [PhCHFNFR] \rightarrow 19 PhCF=NR + PhCF₂NFR (8) 20 21

addition that resulted in the intermediate vicinal difluoride (19). The weak N-F bond (64.5 kcal/mol) coupled with the relative acidity of the benzylic proton resulted in dehydrofluorination even at -78 °C to produce compound 20. A second mole of fluorine added to 20 giving the trifluorinated compound 21.

The α,α -difluorofluoramines could be purified by chromatography on an untreated silica gel column. However, when the silica gel was first dried under vacuum at 160 °C, conversion to the N-fluoroimine (22) was observed in 25% yield (eq 9). Hydrolysis of the trifluoro adducts led to N-fluoro-N-alkylbenzamides (23) as shown in eq 10.57

$$\begin{array}{c}
\text{PhCF}_{2}\text{NFR} \to \text{PhCF} = \text{NF} \\
21
\end{array} (9)$$

$$\begin{array}{c}
\text{PhCF}_{2}\text{NFR} \xrightarrow{\text{H}_{2}\text{O}} \text{PhCONFR} \\
21 & 23
\end{array} (10)$$

2. Diazo and Related Compounds

Geminal difluorides have been prepared from diazo compounds as shown in Table III. The reaction of fluorine diluted with nitrogen in Freon 11 at -70 °C proceeds for a variety of diazo compounds, however, fluorination was always adjacent to either an aromatic ring or a carbonyl group. Neither the carbonyl functionality nor any of the C-H bonds were affected in the reactions, suggesting that a free radical pathway for the reaction was unlikely. In addition, the enthalpy for the reaction, calculated to be -154 kcal/mol, may explain the selectivity observed. The mechanism in Scheme III might be considered.

In a related reaction, a number of aryl ketone hydrazones (Table IV) have been shown to react with dilute molecular fluorine to form monofluoro and geminal difluoro derivatives. Oxidation of the hydrazone gave a diazo intermediate, which was found to react with a molecule of HF (generated during the oxidation) to form the monosubstituted product or with elemental fluorine to produce the geminal difluoride. The hydrazones of benzaldehyde, cyclohexanone, and cyclopentanone did not give fluorinated products.

III. Nitrogen Derivatives

A. Isocyanates

Merritt⁶¹ found that alkyl isocyanates, unlike imines, did not add fluorine to the double bond. Initial side

TABLE IV. Fluorination of Aryl Ketone Hydrazones

entry	substrate	products	% yield	ref
1	Ph ₂ C=NNH ₂	Ph ₂ CHF	11 69	60
2	$Ph(CH_3)C=NNH_2$	Ph_2CF_2 $PhCHFCH_3$ $PhCF_2CH_3$	45 34	60
3	PhCH ₂ CPh=NNH ₂	PhCHFCH ₂ Ph PhCF ₂ CH ₂ Ph	45 38	60
4	NNH ₂ AC NNH ₂ NN Me	MeO OMe	15	60
5	AcO NNH ₂	AcO F	38	60

SCHEME III

chain fluorination was followed by loss of fluorophosgene (COF_2) and fluorination on nitrogen as shown for n-propyl isocyanate in Scheme IV. The product mixture was complicated by the reaction of the isocyanate with HF. N-Propylcarbamyl fluoride (24) was found to be the precursor of N-fluoro-N-propylcarbamyl fluoride (25) and could be excluded when a strong HF scavenger such as sodium carbonate was employed.

B. Isonitriles

The reaction of organic isonitriles⁶² was shown to give primarily aza analogues of fluorophosgene (26) which were used in situ due to the susceptibility to hydrolysis. Traces of HF in the reaction mixture resulted in addition and dimerization products (27) and (28) (eq 11).

$$\begin{array}{c} \text{RN} = \subset \xrightarrow{F_2} [\text{RN} = \subset F_2] \rightarrow \\ 26 \\ \text{RNHCF}_3 + \text{RN} = \subset \text{FNRCF}_3 \ (11) \\ 27 \\ \end{array}$$

C. Amides

Since the Grakauskas review,⁴ only two papers have addressed the fluorination of amides. Difluoramino carboxylic acids have been prepared from their corresponding lactams with elemental fluorine.^{63,64} The NF₂ group is thought to be a better isostere for CH₃ than CH₂F in the preparation of fatty acid cardiac imaging agents, because it introduces less polarity into the aliphatic chain as indicated by chromatography.⁶³ For example, 15-difluoraminopentadecanoic acid (30) was prepared by treating the corresponding lactam (29) in

SCHEME IV

acetonitrile/water (9:1) with a fluorine (2% in nitrogen) in 50% yield (eq 12—isolated as the methyl ester for

$$\begin{array}{c|c}
 & O & H & O \\
\hline
 & C & N & F_2 & O \\
\hline
 & Q & CH_3CN & F_2N(CH_2)_{14}COH & (12)_{14}COH \\
\hline
 & Q & Q & Q & Q & Q \\
\hline
 & Q & Q & Q & Q & Q \\
\hline
 & Q & CH_3CN & F_2N(CH_2)_{14}COH & (12)_{14}COH & (12)_{14}C$$

analytical purposes). Jewett and Ehrenkaufer found that hydrolysis of the difluoramine group at pH 8 was slow with respect to the half-life of ¹⁸F.⁶³

IV. Substitution at Unactivated C-H Positions

In a process reminiscent of the reaction between ozone and hydrocarbons, ⁶⁵ dilute elemental fluorine has been shown to selectively replace tertiary hydrogens with retention of configuration for a number of unactivated substrates. ^{3,66-75} The reactivity of the tertiary C-H bond in electrophilic substitution has also been observed by Olah during the deuterolysis of alkanes with superacids. ⁷⁶

The fluorinations were conducted at low temperatures with varying amounts of chloroform in Freon to take advantage of the slight differences in the electron densities of the C-H bonds and optimize product yields. In unstrained molecules the electron density at a tertiary hydrogen is greater than that at secondary or primary so the hydrogen is more vulnerable to substitution. The mechanism proposed for this substitution is illustrated in Scheme V. Chloroform can also act as a free-radical scavenger, 68 which helps prevent overfluorination. When a nonpolar reaction medium was used (pentane or CFCl₃ for example), radical processes interfered and complicated product mixtures resulted. 67 The products of fluorination of various substrates are compiled in Tables V and VI.

Electron withdrawing substituents decrease electron density in molecules and affect the fluorination of nearby tertiary positions. When the tertiary position is β to an ester, the yield of fluorinated product was about half that obtained when it was γ (Table V, entries 22 and 28). Since inductive effects fall off rapidly with distance, field effects may play an important role. Although entries 23 and 24 (Table V) both show about 60% fluorination, the reaction was significantly slower

TABLE V. Tertiary Hydrogen Fluorinations Resulting In Mainly One Product

entry	product	% yield	ref	entry	product	% yield	ref
1	F_CH ₂ CH ₂ OAc	40	66	29	F	< 50	67
2	7 000	20	66		OC⟨O}-NO₂		
	A Contract of the Contract of				$\stackrel{\circ}{\text{MeO}_2\text{C}(\text{CH}_2)_m\text{C}(\text{Me})(\text{F})(\text{CH}_2)_n\text{CO}_2\text{Me}}$		
	Ė		44	30 31	m = n = 1 $m = 1, n = 2$	$\frac{2}{10}$	74 74
3	A F	75	66		$CH_3CO_2(CH_2)_mC(CH_3)(F)(CH_2)_nO_2CCH_3$		
				32 33	m = n = 2 m = 2, n = 3	$\frac{37}{3}$	74 74
4	A OAC	20	66		OR OR		
					F		
	F F			34	$R = CF_3C = O$	34	3, 75
5	$R_1 = R_2 = H$	50	66	35	$R = CH_3C = 0$	50	3
6	$R_1 = OMe, R_2 = Et$	20	66	36	F	25	3, 70
	F				CH ₃ CO H		
7 8	R = H R = OH	71–90 70	73, 75 66	37	Н 🔀	50	3, 75
9 10	$R = p-O_2CC_6H_4NO_2$ $R = NHCOCF_3$	90 83	66 73, 75		- ОН		-,
11	K = MICOCP ₃	70	67		F		
					сна Со		
	F			38	CH ₃	0	71
					F		
12	cis	80	67	39	CH ₂ CO ₂ Me	30	71
13 14	trans $CH_3CH_2C(CH_3)(F)(CH_2)_5CH_3$	90 60	67 67		Et Me F Me		
	oco → No₂			40	(CH ₂) ₃ OCCH ₃	40	71
					°		
	MA			41	0	60	71
15	trans-Me + p-OCOC ₆ H ₄ NO ₂	60	68		(CH ₂) ₂ COCH ₂ CCI ₃		
16	$cis-Me + p-OCOC_6H_4NO_2$	65	68	42	CH₃	30	71
	OCO NO2				(CH.)-		
				43	0 -	25	72
17	$rac{\sim}_{F}$ trans-t-Bu + p-OCOC ₆ H ₄ NO ₂	50	68		CO₂Me		
18	cis- t -Bu + p -OCOC ₆ H ₄ NO ₂	83	68				
19	Me CO ₂ Me	25	74		AcO'''		
	F CO ₂ Me			44	OAC L.F.	25	72
	Ļ				ĊO₂Me		
20	$R = CH_3$	20	74		AcO ^{NII} OAc		
21	R = CH ₂	10	74		R ¹ -R ²		
	(CH ₃) ₂ C(F)R						
$\frac{22}{23}$	R = (CH2)2CO2CH2CCl3 $R = (CH2)3CH(CH3)OCOC6H4NO2-p$	55 65	69 69		, v		
24 25	$R = (CH_2)_2OCOC_6H_4NO_2-p$ $R = (CH_2)_3CH(CH_3)(CH_2)_2OCOC_6H_4NO_2-p$	60 30	69 69		ŌAc		
26	$R = (CH_2)_2O_2CCCl_3$	65	69	45 46	$R^1 = COCH_3$, $R^2 = X = H$, $Y = F$ $R^1 = R^2 = O$, $X = F$, $Y = H$	37 20	75 75
27	R = (CH2)2OCH2O(CH2)2OCH3 R = CH2CO2CH2CCl3	20 25-30	69 69	40	K = K = 0, X = F, T = H	20	10

TABLE V (Continued)

entry	product	% yield	ref	entry	product	% yield	ref
47	QAC CI CI	27	75	48	OCCF ₃	34	75

for the compound where the tertiary hydrogen was closer to the electron-withdrawing group. When there were two tertiary positions within the molecule, as with 3,7-dimethyl-1-octyl-p-nitrobenzoate (entry 25, Table V), only fluorination at the more remote tertiary position was observed.

In Table VI, two or more monofluorinated products were observed because there were two or more tertiary hydrogens available for substitution. The reaction generally only gave a monofluorinated product even when two tertiary centers were available in the molecule. Once substituted, the electronegative fluorine decreased the electron density available at the other tertiary position (Table VI, entries 4 and 5).

The p character of the C-H bond in rings varies with ring size due to differing amounts of bond strain. This is exemplified by the increasing reactivity of tertiary hydrogens as ring size increases from three to six carbons, entries 38-41 (Table V). Competition from radical fluorination was significant in larger ring systems due to the increased ratio of nontertiary to tertiary hydrogens (entry 42). Molecular fluorine also reacted with unactivated polycyclic compounds selectively fluorinating tertiary bridgehead positions (entries 2, 4, 7-10).

Susceptibility of ethers to oxidation by fluorine (entry 27) resulted in decreased hydrogen substitution as well as carbonyl-containing byproducts.⁶⁹

The substitution of tertiary hydrogens with fluorine has been extended to fluorination of various steroids (entries 34–37). Monofluorination has been accomplished at the C-5 (β), C-14 (α), and C-17 (α) positions of bile acids, ⁷² the C-9 center in corticoids, the C-14 position in cardenolides, and the C-17 for conversion of plant sterols into steroids of biomedical interest. The highly polar transition state and substituent inductive effects at proximal and/or remote sites to two or more tertiary hydrogens can be used to predict the fluorination products. ³

V. Electrophilic Aromatic Substitution

A. Evaluation of F⁺ as a Reactive Intermediate

The development of fluorinating agents that have a tendency to follow electrophilic patterns of substitution with a variety of substrates has prompted the question, "Does the fluoronium (F⁺) ion exist?" The many examples of syn addition of fluorine to double bonds¹⁷⁻¹⁹ suggest the absence of a fluoronium ion. Olah and co-workers,⁷⁷ have ruled out a bridged fluoronium species in the equilibration of the 2,3-dimethyl-3-fluoro-2-butyl cation in superacid solution on the basis of spectral observations. Christie^{78,79} theorizes that the fluoronium ion cannot exist because no group of atoms,

SCHEME VI

even those containing fluorine, should have a greater electronegativity than fluorine, the most electronegative atom. However, Cartwright and Woolf argue that the existence of NF_4 and XeF^+ salts infer the presence of positive fluorine. With regard to monofluorination of aromatic rings, theoretical studies have compared the stability of a bridged fluoronium ion and an open protonated fluorobenzene. Hehre and Hiberty have shown that a bridged fluoronium ion intermediate would lie at an energy maximum, some 20.5 kcal/mol higher than a protonated fluorobenzene.

B. Reaction of Aromatic Substrates

Early attempts to substitute aromatic rings with elemental fluorine were plagued with problems. The introduction of dilute solutions of molecular fluorine has greatly enhanced the ability to control reactions of this type. Cacace et al.¹³ have performed aromatic substitutions on a variety of aromatic rings with molecular fluorine (<0.76% F₂ in N₂), at low conversions (0.01%), near the lower limit of analytical sensitivity. The reactions run in CFCl₃ at -78 °C show first-order kinetics under these conditions, dependent only on the amount of aromatic substrate present. 13,82 Fluorination positions on substituted benzene rings mimicked the pattern generally observed for electrophilic aromatic substitution. 13,83 A plot of the partial rate factors vs. σ^+ constants for polar aromatic substitution gave a ρ^+ value of -2.45 (correlation coefficient of 0.993), supporting the proposed mechanism shown in Scheme VI. For these low-temperature reactions, radical processes could be discounted.

Grakauskas⁸³ was able to fluorinate several aromatic compounds on a synthetically useful scale. The substitution pattern also suggested electrophilic addition. The reactions were generally run in acetonitrile at -20 °C, and for methyl benzoate gave 74% p-, o-, m-fluorobenzoates (1:3:5, respectively).

Sams et al. 14 have utilized molecular sieves to minimize the possibility of secondary reactions with F_2 . As a result, polymer formation that has been commonly observed with increasing conversion to product was absent. After optimization of the reaction conditions (-78 °C, no solvent), Sams obtained almost 20% o- and p-difluorobenzenes from fluorobenzene.

TABLE VI. Tertiary Hydrogen Fluorinations Resulting in Two or More Products

entry	yproduct mixtures	ref
1	CH ₂ OC — NO ₂ CH ₂ OC — NO ₂ + F	66
2	15% 10% CH ₂ CH ₂ OAC + CH ₂ CH ₂ OAC F 15%	66
3	F + F F 10%	67
4	OCO—NO ₂ + F OCO—NO ₂ 60% 10%	67
5	(CH ₃) ₂ C(F)(CH ₂) ₃ CH- + (CH ₃) ₂ CH(CH ₂) ₃ C(F)- (CH ₃)(CH ₂) ₃ CH(CH ₃)- (CH ₂) ₃ CH(CH ₃)- (CH ₂) ₃ CH(CH ₃) ₂ (25%) (25%)	67
6^a	HO 40% + HO 20%	3, 70
7	X = F, Y = H; 15% $X = H, Y = F; 40%$ $X = H, Y = F; 40%$	72
8	X = H, Y = F; 15% $X = F, Y = H; 25%$ Aco.	72
9	X = Z = H, Y = F; 10% $Y = Z = H, X = F; 10%$ $X = Y = H, X = F; 10%$ $X = Y = H, Z = F; 10%$ $X = Y = H, Z = F; 10%$	72

^a Dichloride was treated with fluorine, followed by reduction with Zn and alkaline hydrolysis.

Misaki^{84,85} has monofluorinated a variety of oxygenated aromatic substrates in high yields using molecular fluorine (11% in nitrogen). Fluorination of a 10% solution of phenol at -20 °C, at 10% conversion to the monofluorinated product gave fluorophenols with an ortho to para product ratio of 22:1. However, at greater conversions (51-56%), under identical reaction conditions the ortho to para ratio was 3.6:1, an indication that there was some further reaction of the ortho product with time. Apparently, as the conversion increased, some of the ortho isomer was changed to an unidentified polymeric material, an experimentally observed

TABLE VII. Fluorination of Substituted Phenols RPhOH in CH₂CN

R	<i>T</i> , °C	% conversion	products, %	ref
2-CH ₃	-20	70.8	(4-F) 27.5; (6-F) 22.5	84
3-CH ₃	-20	67.7	(4-F) 20.7; $(2-F + 6-F)$ 46.4	84
4-CH ₃	-20	78.0	(32) 38.4; (33) 23.1	84
4-CO ₂ H	-10	63.3	(2-F) 59.4; (2,6-F ₂) 14.4	85
2-CO ₂ H	-10	79.0	(4-F) 55.9; (4,6-F ₂) 21.0	85
2-CHO	-10	62.9	(4-F) 32.1; (6-F) 22.1,	85
			$(4.6-Fe_2)$ 5.1	
4-Ph	-10	-	$(2-F)$ 50.1; $(2,6-F_2)$ 21.5	85
Н	-20	56.1	(2-F) 38.9; (4-F) 10.7	84

byproduct. Temperature also seemed to have an effect on the isomeric ratios. Misaki found that at 10% conversion and at 10 °C, phenol yielded only a 10:1 ortho to para ratio. In addition, at lower temperatures greater conversions and fewer sunsequent reactions were observed.

Misaki⁸⁴ also investigated the fluorination of the various substituted phenols. Those results are summarized in Table VII. p-Cresol (31) produced a very interesting side product in addition to the expected o-fluoro derivative (32) (eq 13). 4-Fluoro-4-methyl-

2,5-cyclohexadienone (33) was observed in yields as high as 42.1% in tetraglyme at -20 °C. Interestingly, he⁸⁵ observed fluorination of salicylaldehyde, but oxidation and fluorination of several phenolic compounds.⁸⁵ Salicyclic acid gave a 72.6% yield of 3-fluoro salicylic acid, while phenyl salicylate gave a mixture of 3- and 5-fluorophenyl salicylates in 88.6% yield.

When radiolabeling was applied to L-dopa (34) to measure the metabolism of the neurotransmitter dopamine in the brain, a 0.5% solution of [¹⁸F]F₂ at -65 °C in HF gave a 5.8% chemical yield and a 3.0% radiochemical yield of 6-[¹⁸F]fluoro-L-dopa (35) (eq 14).⁸⁶

Major byproducts were the 2-fluoro and 5-fluoro-L-dopa in 12% (36) and 1.7% (37) yields, respectively. Liquid

TABLE VIII. Fluorination of Organometallic Compounds in FCCl₃ with F₂ at -78 °C

M.	ArR	% yield,		
M	R	radiochem (chem)	ref	
$\operatorname{Sn}(n\text{-Bu})_3$	3,4(OCH ₃) ₂	56	87	
$\operatorname{Sn}(n-\operatorname{Bu})_3$	4-OCH ₃	72	87	
$\operatorname{Sn}(n\text{-Bu})_3$	4-CH ₃	82	87	
$\operatorname{Sn}(n-\operatorname{Bu})_3$	$3-CH_3$	58	87	
$\operatorname{Sn}(n\text{-Bu})_3$	$2-CH_3$	54	87	
$\operatorname{Sn}(n-\operatorname{Bu})_3$	H	72	87	
$\operatorname{Sn}(n\text{-Bu})_3$	4Cl	>95	87	
$\operatorname{Sn}(n-\operatorname{Bu})_3$	4F	>95	87	
SiMe ₃	H	20 (23)	90	
SiMe ₂ Bu	H	21 (24)	90	
$SiMePh_2$	H	14 (16)	90	
SiMe ₃	4-CN	14 (16)	90	
SiMe ₃	4-Cl	14 (16)	90	
$\operatorname{Sn}(n\operatorname{-Bu})_3$	H	38 (70)	89, 91	
SnPh ₃	H	8 (15)	89, 91	
SiPh ₃	H	(2.4)	89	
$PbPh_3$	H	(0)	89	
HgPh	H	(26)	89	
SiMe ₃	H	24.5	88	
SiMe ₃	4-CH_3	27.9	88	
SiMe ₃	4-OCH ₃	21.3	88	
$SiMe_3$	4-Cl	21.5	88	
SiMe ₃	$4-SiMe_3$	21.6	88	
HgPh	H	(40)	92	

HF was chosen to minimize the oxidation of L-dopa which is initiated by the deprotonation of the hydroxyl group.

The use of fluorine to cleave aryl metal bonds is summarized in Table VIII. [^{18}F] F_2 gave exceptional radiochemical yields for the p-chloro and p-fluoro tin substrates (>95%). 87 Yields of the aryl fluoride were generally higher when the reaction was run in CCl₄ at 0 °C rather than CFCl₃ at -78 °C.

A number of aryltrimethylsilanes have been successfully substituted at the ipso position with both radioactive elemental fluorine ([18F]F₂)⁸⁸⁻⁹⁰ (eq 15) and

acetyl hypofluorite (CH₃COO¹⁸F). ^{87,88} (See section VIII.A.1). Reaction yields were generally low (under 30%) and gave various F for H substitutions. In general, [¹⁸F]F₂ gave the higher radiolabeled product yields, a result that was attributed to the milder electrophilic character of the acetyl hypofluorite. In addition, the reaction was much cleaner with F₂ as a reagent. The substitution ratios for fluorination at silicon vs. hydrogen were dependent on the substituent para to the leaving trimethylsilyl group. When the group was strongly ring activating, F for H substitution increased relative to silyl substitution.

VI. Metathetical Reactions

Rozen has found that elemental fluorine (1.5% in nitrogen) reacts with both iodo- and bromoadamantanes in CFCl₃ to give the corresponding fluoro derivative in yields as high as 99%. 93 1-Bromoadamantan-4-one, 3,5-dimethyl-1-bromoadamantane and methyl (3-bromo-1-adamantyl) acetate were fluorinated by a me-

tathetical process to give the fluoro adducts in 95%. 97%, and 90% yields, respectively. The intermediacy of a stable adamantyl cation was postulated because tertiary fluorides were formed in higher yields than secondary fluorides. Further, solvent incorporation of an ethoxy and hydroxy group was observed when ethanol or water was present in the halogenated solvent. When 2-iodoadamantane reacted with fluorine in methylene chloride, 47% 2-chloroadamantane was isolated in addition to 50% 2-fluoroadamantane.93 In previous work, Barton et al. observed debromination upon fluorinating a 5,6-dibromide steroid;3 however, fluorine for bromine substitution was not mentioned. The 5.6-dichloro derivative of the same steroid did not dechlorinate, but underwent substitution at a remote tertiary hydrogen. This result is consistent with Rozen's observation that 1-chloroadamantane and other chloro compounds do not react with elemental fluorine.

The mechanism postulated for the reaction requires oxidation of the halogen in secondary haloadamantanes and tertiary bromoadamantanes. Tertiary iodoadamantanes, however, are easily ionized to a stable carbocation and could react with fluoride ion generated from the reaction of the iodo nucleophile with fluorine.⁹³

In a related reaction, L-cysteine and 2-(diethylamino)ethanethiol have been successfully fluorinated and simultaneously desulfurized in 33% and 25%, respectively. The reaction was carried out in liquid HF saturated with gaseous BF₃ at -78 °C. L-Cysteine (38) afforded 3-fluoro-L-alanine (39) in 33% yield along with 3% difluoro byproduct (40) (eq 16). The mechanism

HSCH₂CH(NH₂)CO₂H
$$\xrightarrow{F_2/\text{He}}$$

The mechanism HSCH₂CH(NH₂)CO₂H $\xrightarrow{F_1/\text{He}}$

FCH₂CH(NH₂)CO₂H + F₂CHCH(NH₂)CO₂H (16)

39, 33% 40, 3%

for the reaction was thought to proceed via oxidation of the sulfur followed by fluoride ion displacement of SF_3^+ which is known to exist in liquid HF.⁹⁵

1-Bromo- and 1-iodo-3,3,3-trinitropropane underwent a metathetical reaction with elemental fluorine in anhydrous CCl₄ at 0 °C to give the 1-fluoro-3,3,3-trinitropropane in yields as high as 90% (eq 17).⁹⁶ The

$$\begin{array}{c|c}
O_2N & X & O_2N & F \\
O_2N & O_2N & O_2N & NO_2
\end{array}$$

$$X = Br. I$$
(17)

mechanism for the reaction was presumed to be free radical because formation of the dimer, 1,1,1,6,6,6-hexanitrohexane, was also observed.

VII. Preparation of Commercially Unavailable Fluorinating Reagents

A. Organo Fluoroxy Compounds

1. Acyl Hypofluorites

The research impetus in hypofluorite chemistry has recently changed focus from CF₃OF to the acyl hypofluorites (CH₃COOF, CF₃COOF) and cesium fluoroxy-sulfate (CsSO₄F). The chemistry and properties of CF₃OF, the only commercially available hypofluorite,

TABLE IX. Reaction of Alkenes with Acyl Hypofluorites

entry	substrate	product	hypofluorite	% yield	ref
1	trans-PhCH=CHPh	threo-PhCHFCHPhOAc	CH₃COOF	50	102, 123
2	cis-PhCH=CHPh	erythro isomer threo-PhCHFCHPhOAc erythro isomer	$\mathrm{CH_{3}COOF}$	7 1 51	102, 123
3	trans-p-MeOPhCH=CHPh	$threo-p$ -MeOPhCH(OAc)CHFPh a	$\mathrm{CH_3CCOF}$	42	123
4	trans-p-MeOPhCH $=$ CHMe	erythro isomer threo-p-MeOPhCH(OAc)CHFCH3 ^b erythro isomer	$\mathrm{CH_{3}COOF}$	15 57 13	123
5		FOAC	CH₃COOF	60	123
6	$C_{10}H_{21}CH=CH_2$	C ₁₀ H ₂₁ CH(OAc)CH ₂ F	CH ₃ COOF	30	123
7	trans-PhCH=CHCO ₂ Et	threo-PhCH(OAc)CHFCO ₂ Et	CH ₃ COOF	57	123
8	cis-PhCH=CHCO ₂ Me	$erythro ext{-}PhCH(OAc)CHFCO_2Me$	CH_3COOF	50	123
9	trans-PhCH=CHCOPh	$threo ext{-}PhCH(OAc)CHFCOPh$	CH_3COOF	70	123
10		O Ac	CH₃COOF	55	123
11	QC°F°	O C	CH ₃ COOF	95	123
12			CH₃COOF	64	123
13	OAC	F	CH₃COOF	90	123
14	trans-PhCH=CHPh	threo-PhCHFCH(OH)Ph	CF ₃ COOF	62	105
15	cis-PhCH=CHPh	erythro-PhCHFCH(OH)Ph	CF ₃ COOF	58	105
16	$trans$ -PhCH=CHPh- p -CO $_2$ Me	threo-PhCH(OH)CHFPh-p-CO ₂ Me	CF ₃ COOF	80	105
17	cis-PhCH=CHPh- p -CO ₂ Me	erythro-PhCH(OH)CHFPh-p-CO ₂ Me	CF ₃ COOF	25	105
18	trans-PhCH=CHPh-p-COMe	threo-PhCH(OH)CHFPh-p-COMe	CF ₃ COOF	28	105
19	trans-PhCH=CHPh-p-Cl	threo-PhCH(OH)CHFPh-p-Cl threo-PhCHFCH(OH)Ph-p-Cl	CF ₃ COOF	32 32	105
20	CH=CHPh	CO ₂ Me	CF ₃ COOF	40	105
	•	erythro isomer		14	
21	trans-PhCH=CHPh-p-OMe	erythro-F MeO	CF₃COOF	57	105
		threo isomer		14	
22	trans-PhCH=CHPh-p-Me	PhCHFCH(OH)Ph-p-Me } PhCH(OH)CHFPh-p-Me }	CF_3COOF	48	105
				8	105

^aIn addition 5% threo- and 14% erythro-1-acetoxy-1-(3-fluoro-4-methoxyphenyl)-2-fluoro-2-phenylethane was formed. ^bIn addition, 15% of a mixture of threo- and erythro-1-acetoxy-1-(3-fluoro-4-methoxyphenyl)-2-fluoropropane was isolated.

$$CF_3CONa^{+} + F_2 - CF_3COF$$

$$41$$

$$VaF$$

$$CF_3CF_2OF \xrightarrow{two} CF_3CF \xrightarrow{O\bar{N}a^{+}} F_2 - CF_3CF \xrightarrow{OF} OF$$

$$43$$

were reviewed in 1978 by Hesse⁹⁷ and will not be discussed. Recent synthetic studies with CF₃OF have in-

volved reactions with diarylethenes, 98 diazo compounds, 59 steroids, 23 arenes, 99 and silyl enol ethers. 6,100 Cady prepared and characterized trifluoroacetyl hy-

Cady prepared and characterized trifluoroacetyl hypofluorite, CF₃COOF (41), in 1953, ¹⁰¹ but hypofluorite chemistry did not move to the forefront until 1981 when Rozen discovered a general synthetic procedure for acetyl hypofluorite, CH₃COOF (42). ^{16,102,103} The synthesis of trifluoroacetyl hypofluorite (41) from sodium trifluoroacetate ^{104–107} as well as perfluoroalkyl hypofluorites ¹⁰⁸ (43 and 44) is outlined in Scheme VII. Compounds 43 and 44 formed in the absence of moisture or acid have synthetic utility similar to that of 41 and 42. Rozen and Barnette extended the solution preparation to the formation of stable long-chain

entry	substrate	product(s)	% yield	ref	entry	substrate	product(s)	% yield	ref
1	PhOMe	2-FPhOMe 4-FPhOMe	77	16	17	NHAC	NHAC	34	16
2	OMe	4-FFROME	8 39	16		\bigcirc			
2	O'Me		38	10		CF ₃	CF ₃		
	\bigcirc	F					F	00	
	Оме	ŮMe					NHAC	28	
		F	55				\bigcap		
		OMe							
							ĊF₃		
		OMe			18	NHAc	NHAc	67	16
3^a	PhOEt	2-FPhOEt	46	16		\Rightarrow	F		
		4-FPhOEt	6			11 0			
4^{b}	$2R_1OPhOR_2$	_	-	16		Me Me	Me Me		
5	OMe	,OMe	42	16	19	NHAC	NHAC	85	16
	NO ₂	\bigcap				Me	Me		
	1402	F NO ₂			00	NHAC	AILLA	=0	4.0
6	NO ₂	F NO ₂	47	16	20	NHAC	NHAC	72	16
•	[O]	ĬOĬ				CF ₃	CF3 F		
	MeO	MeO				•	•		
7	NO ₂	F NO ₂	62	16	21	NHAC	NHAC	65	16
		[O]				Br	Br F		
	но	но				MeO SnBu ₃	MeO. A.F		
8^c	ОН	, OH	9	16	22	Meo Shaus	(Web)	68°	87
	CO 440					\bigcirc	\bigcirc		
	CO₂Me	CO2Me) OMe	 OMe		
		~ .OH	14		23	4-MeOPhSnBu ₃	4-MeOPhF	78^e	87
		\bigcap	14		24	4-MePhSnBu ₃	4-MePhF	72 ^e	87
		F CO ₂ Me			25 26	3-MePhSnBu ₃ 2-MePhSnBu ₃	3-MePhF 2-MePhF	71° 57°	87 87
9^d	PhNHAc	2-FPhNHAc	55	16	27	PhSnBu ₃	PhF	72°	87
		4-FPhNHAc	8		28	4-ClPhSnBu ₃	4-ClPhF	68e	87
10	PhNHCOCF ₃	2-FPhNHCOCF ₃	57 50	16	29	4-FPhSnBu ₃	4-FPhF	73^e	87
11 12	PhNHCO-t-Bu 2-MePhNHAc	2-FPhNHCO-t-Bu	52 0	16 16	30	PhOMe	2-FPhOMe	64	121, 127
13	2-BrPhNHAc		0	16	31	4-MeOPhHgOAc	4-FPhOMe 4-MeOPhF	21 65	121, 12
14	CF₃	CF ₃	62	16	32	PhNHAc	2-FPhNHAc	44	121, 12
			٥2	10			4-FPhNHAc	22	,
	NHAC	NHAC			33	4-AcOHgPhNHAc	4-FPhNHAc	60	121, 12
		F			34	PhOH	2-FPhOH 4-FPhOH	45 30	121, 12'
15	NHAC	F !	32	16	35	2-HOPhHgCl	2-HOPhF	53	121, 12
	\bigcirc	NHAc			36	4-HOPhHgCl	4-HOPhF	47	121, 12
	T Me	\bigcirc			37	PhH	PhF	18	121, 12'
	Me	Me			38 39	PhHgCl	PhF	55	121, 12
		NHAC	28		39	$PhCH_3$	2-FPhCH ₃ 3-FPhCH ₃	8 1	121, 12
							4-FPhCH ₃	4	
		F					PhCH ₂ F	1	
		Me			40	PhHgOAc	PhF	58	121, 127
		F NIHA	11		$\begin{array}{c} 41 \\ 42 \end{array}$	PhSiMe ₃ 4-MePhSiMe ₃	PhF 4-MePhF	$10^{e,f} \ 13^{e,f}$	88 88
		NHAC			42 43	4-MeOPhSiMe ₃	4-MeOPhF	9e,f	88
		F			44	4-ClPhSiMe ₃	4-ClPhF	$15^{e,f}$	88
		Me			45	4-BrPhSiMe ₃	4-BrPhF	$14^{e,f}$	88
		NHAC	10		46 47	4-MeCOPhSiMe ₃ 4-AcOPhSiMe ₃	4-MeCOPhF	6 ^{e,f} 1 <i>Ge,f</i>	88
		[O]			48	4-Me ₃ SiPhSiMe ₃	4-AcOPhF 4-FPhSiMe₃	$16^{e,f} \ 16^{e,f}$	88 88
		F			49	$K_2[PhSiF_5]$	PhF	20^e	135
		Me			50	K ₂ [PhCH ₂ SiF ₅]	PhCH ₂ F	6 ^e	135
16	∧ NHAc	NHAc	25	16	51 52	$K_2[4CH_3PhSiF_5]$	4-CH ₃ PhF	18°	135
20		(O)	20	10	52	$PhNH_2$	$2 ext{-} ext{FPhNH}_2$ $4 ext{-} ext{FPhNH}_2$	$\frac{3.5}{2.5}$	127
	Ÿ	F			53	4-AcOHgPhNH ₂	4-FPhNH ₂	4	127
	Br	₿r			54	3-AcOHgPhNH ₂	3-FPhNH ₂	19	127
		F	47		55	PhCl	2-FPhCl	5	127
		NHAC			F.C	L-dopa	4-FPhCl 6-F L-dopa	5 4 ^e	122
		$[\bigcap]$			56	L-dona	n-H L-done		

 a 50% conversion. $^bR_1 = R_2 = Me$; $R_1 = Me$, $R_2 = Ac$; $R_1 = R_2 = Ac$; $R_1 = Me$, $R_2 = OCOCF_3$; $R_1 = Me$, $R_2 = i$ -Pr. No definite monofluoro products; only tars were observed. c 70% conversion. d 80% conversion. e Radiochemical yield from $CH_3CO_2^{18}F$. f Ring fluorination also observed.

TABLE XI. Reaction of Hypofluorites with Derivatives of Various Carbonyl Compounds

entry	substrate	product	% yield	ref
1	EtOCOCOCH ₂ CO ₂ Et	EtOCOCOCHFCO ₂ Et	65ª	120
2	[EtOCOCOCHCO2Et]-Na+	EtOCOCOCHFCO ₂ Et	75°	120
3	MeCOCH ₂ CO ₂ Et Na	M-COCLECO E		
	IMACOCITO ELI-NA+	MeCOCHFCO ₂ Et	724	120
4	$[{ m MeCOC ilde{H}CO}_2^2{ m Et}]^-{ m Na}^+$	$MeCOCHFCO_2$ Et	81ª	120
5	~	^ 0	30^{a}	120
	CO ₂ Me	F		
		ĊO₂Me		
6	г _э э ⁻	A 40	60^a	120
v			00	120
	Na ⁺			
	CO ₂ Me	F CO ₂ Me		
7	~	✓	30^{a}	120
	COMe	COMe		
		COME		
8	[^ 0]	^°	90^a	120
	Na ⁺			
	COMe	√ _F		
	[COME]	COMe		
9	[^ 0]	^	92ª	120
J	Na ⁺		32	120
		CO ₂ Et		
	CO ₂ Et	Ė		
10	$[\mathrm{CH}(\mathrm{CO_2Me})_2]^-\mathrm{Na^+}$	$CHF(CO_2Me)_2$	52ª	190
11	[EtC(CO2Xie)2] -Na+	$EtCF(CO_2Et)_2$	77°	120
12	PhCOCH ₂ Li	PhCOCH ₂ F		120
12	PROOCH I:	PROCEEDS	75°	123
13	$2-C_{10}H_7COCH_2Li$	$2\text{-C}_{10}\text{H}_7\text{COCH}_2\text{F}$	55^a	123
14	Гол	Q	86ª	123
		F F		
	Li+			
		~~~		
	D COCKE CIT CIT	D. GOGIIDGII GII GII	= 40	100
15	n-BuCOCHLiCH ₂ CH ₂ CH ₃	n-BuCOCHFCH ₂ CH ₂ CH ₃	54°	123
16	n-C ₆ H ₁₃ CHLiCO ₂ Et	$n ext{-}\mathrm{C}_6\mathrm{H}_{13}\mathrm{CHFCO}_2\mathrm{Et}$	67^{a}	123
17	רו ד	1 -	$37^{a} (ax)$	123
			40° (eq)	123
	Na ⁺		_	
		Y *0		
		\wedge		
	4 4			
18	OAc I	O II	$85^{b,c} (eq)$	104, 106, 107, 109
		Ç, F		
	~~	$\checkmark\checkmark$		
19			43c (trans)	106, 107
10	—— />—OAC	$+\leftarrow$ \triangleright	29° (cis)	100, 101
		$\overline{}$	25 (CIS)	
		F		
20	C—OAc	-ç=0	87°	107
	(ÇH ₂) ₁₀	(CH ₂) ₁₀		
		()		
	СН	CHF		
21	OAc	O CCH₂F	45^{c}	106, 107
	C CH2	ÖCH₂F		
	\checkmark \checkmark			
22	OAc	0	85°	104
	$\lambda \downarrow \downarrow$	>. ↓		
		}		
	₹ /	}		
	PLOTE GOAL SOTE PL	PL CHECOCH PL	* 0¢	100
23	$PhCH=C(OAc)CH_2Ph$	$PhCHFCOCH_2Ph$	50°	106
24	OAc	(S) (P)	62°	106
	Ph—(())—c(Ph-(())(
	`CH ₂	CH₂F		
		0	004	
		a. 🚫 🕽	29^c	
		Ph		
		_		
25	AcO.	. X	65°	106
		~/\		
		п ¦		

TABLE XI (Continued)

entry	substrate	product	% yield	ref	
26	OAc	° F	80°	106	
27	Aco		40–50° 60 ^b	106 109	
28	AcO	F	85 ^{b,c}	106, 109	
29	Aco	o Linny	$27^c~(lpha) \ 43^c~(eta)$	106	
30	OAC .	F	85°	106	
31	CH ₂ OAc OAc AcO	CH ₂ OAc OAC OAC	784	118, 119	
32	CH ₂ OAc	CH ₂ OAc AcO OAc	84ª	118, 119	
33	Aco OAc	AcO OAc	96°	119	
34	H Ph	Ph O O O O O	53 °	119	
35	X	CH ₀ F OAc	834	119	
36	ОТS)О	CH ₂ OAc 20 Fw OTs	71°	119	

^a Acetyl hypofluorite. ^bOxidizing solution obtained from F₂ + C₇F₁₅CO₂K. ^cHypofluorite formed from CF₃CO₂Na + F₂.

fluoroxy compounds such as CF₃(CF₂)₇OF, CF₃(CF₂)₆CF(OF)₂, and CF₃(CF₂)₆COOF, which were obtained as a mixture from CF₃(CF₂)₆COOK. The mixture proved somewhat stable for extended periods and exhibits similar chemistry. ^{109,110}

Rozen's procedure for the preparation of $\mathrm{CH_3COOF}$ (42) consisted of bubbling fluorine gas, diluted to 5–10% concentration with nitrogen, through a mixture of sodium acetate in glacial acetic acid and $\mathrm{CFCl_3}$ at –78 °C. The yields of 42 were 50–80% and reactions were conducted on a 30–50 mmol scale. It is noteworthy that acetyl hypofluorite is the first hypofluorite prepared that is not perfluorinated.

Rozen's procedure has been extended to the use of ammonium and other alkali metal salts, especially in the preparation of fluorine-18 labeled 42.^{51,88,111} Jewett has developed a method for the preparation in a gassolid phase system which permits the separation of gaseous 42 from contaminants and is followed by condensation in a solvent suitable for subsequent reactions (CFCl₃, CH₃COOH, CH₂Cl₂, CH₃OH, hexane, DMF).

Jewett's procedure is useful for the preparation of the fluorine-18 labeled hypofluorite. $^{112-114}$ Because radio-labeled F_2 contains only one ^{18}F atom, the preparation of $CH_3COO^{18}F$ is accompanied by nonradiolabeled species. Thus, radiochemical specific activities of the resulting products are low to moderate, but not high.

Acetyl hypofluorite has generally been prepared and used in situ. Adam has reported that an explosion occurred on condensation. Spectral characterizations of 42 have been determined by Rozen for solution preparations. Appelman has also characterized the hypofluorite by spectral methods on pure samples prepared by Jewett's gas-phase synthesis.

The reactions of CH₃COOF (42) with a wide number of substrates have been investigated by Rozen and many other workers. ^{16,21,51,87,88,102,103,118–130} There have been relatively few investigations on CF₃COOF or the other acyl hypofluorites. ^{105–108,114} The reaction products are subject to strong solvent and temperature effects and may indicate the involvement of some radical processes as observed for trifluoromethyl hypo-

SCHEME VIII

fluorite. ^{131–134} Thus, with extrapolation to acyl hypofluorite chemistry, reactions of 41 and 42 may be viewed as electrophilic processes in which the substrate alkene or arene serves as a nucleophile, but radical processes may also be operational. An initial one-electron transfer step, as indicated in Levy's work and for which precedence exists in SET reactions of fluorocarbons, ¹³³ would allow a second step in which either a fluoride ion or radical is transfered (Scheme VIII).

The reactions of acyl hypofluorites, with nucleophilic olefinic and aromatic substrates have proven of great synthetic utility for the introduction of a single fluorine atom at a predictable site in the substrate. Numerous alkene substrates have shown remarkable stereoselective syn additions with both 41 and 42. High regioselectivity introducing the fluorine atom at the nucleophilic site and the acylate function at the site predicted for the more stable carbocation, has also been observed. Fluorohydrin derivatives were formed in 20-90% yields (Table IX). Trans-stilbenes gave three products; and cis-stilbenes gave erythro products with high stereoselectivity (entries 1-4, 14-22). That a higher degree of stereoselectivity is observed with CF3COOF rather than CH₃COOF has been ascribed to the fact that CF₃CO₂ is a harder anion than CH₃CO₂-. (Table IX, compare entries 1 and 14.) Thus, it reacts more rapidly with the hard α -fluoro carbocation of the tight ion pair.²¹ In the presence of stilbenes with activated rings, both addition to the double bond and fluorination ortho to the activating (OCH₃) group are observed 21,102,104,105,107,108 (entries 3 and 4).

Heterocyclic substrates have received very limited attention in reactions with acyl hypofluorites. A study of the reaction of bimane with CH₃COOF by Rozen and Kosower proved interesting as shown (eq 18). 125

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

The reaction of various aromatic substrates with 41 or 42 are compiled in Table X. In the fluoroaromatic derivatives produced, the fluorine atom was generally ortho to the substituent, although mixtures were routinely obtained (entries 15–17). The best results were obtained when activating substituents (OCH₃, OH, NHAc) were present. The ortho substitution by fluorine arose from an addition–elimination sequence at the electron-rich site in the substrate. ^{16,103,121} In the case of piperonal (45), isolation and characterization of an

addition product (46) in 55% yield serves as evidence for the process¹⁶ (eq 19).

Investigations of aryl metallic compounds have shown that substituents other than hydrogen on an aromatic ring may be replaced by fluorine during reaction with CH₃COOF. Such studies have application in the preparation of fluorine-18 ring-substituted aromatic derivatives. Adam showed that the aryl-tin bond in several substrates was readily converted to an arylfluorine bond in 57-78% radiochemical yield from CH₃COO¹⁸F (entries 22-29).⁸⁷ Visser discovered that the aryl-mercury bond was specifically converted to the aryl-fluorine function in 47-65% yield in a process adaptable to fluorine-18 chemistry (entries 31-40). 121 Ward prepared 2-fluoroestradiol on a large scale by reaction of a 2-trifluoroacetyl mercury estradiol derivative with CH₃COOF. 136 The aryl-silicon bond of both arylsilanes and aryl silicates are converted specifically to the aryl-fluorine function. 88,135 In the case of aryl silanes a high degree of replacement of aryl-H bonds accompanied this reaction. Shiue observed radiochemical yields of 5-15% and Si/H substitution ratios from 12.9/1 to 0.9/1 (entries 41-48).⁸⁸

The lithium enolates of ketones were found to react smoothly with CH₃COOF to yield α -fluoroketones (37–86%) as shown in Table XI. Other alkali metals were useful but yields tended to be lower, while unactivated ketones reacted poorly. ^{120,123} Enol acetates were also excellent substrates, and α -fluorocarbonyl compounds formed in 50–90% yield. Steroidal enol acetates with a wide range of structural complexity have also been used (entries 22,27–30). ^{6,21,104,106,107,114}

Several workers have investigated the fluorination of vinyl ether derivatives of carbohydrates with emphasis on the preparation of fluorine-18 labeled sugars (entries 31–36). ^{51,109,118,119,124,127–130} Bida ¹³⁰ first observed the solvent-dependent formation of 2-deoxy-2-fluoro-D-mannose (47), a side product in the preparation of 2-deoxy-2-fluoro-D-glucose (48). Shiue found that 47 was formed in 4% yield in low polarity solvents (CFCl₃, CCl₄) but in 20% yield in high polarity solvents (HOAc, CH₃OH, DMF)¹²⁴ (eq 20). The size of the substituent on the hydroxyl had no effect on the relative yields. ¹²⁶

2. Fluoroxysulfate Salts

Although it had been known for some time that bubbling fluorine gas through an aqueous solution of sodium sulfate gave an oxidizing solution, 137 only in 1981 did Appelman discover that the use of cesium or

TABLE XII. Fluorinated Products Obtained Using CsSO4F

entry	substrate	CsSO ₄ F:substrate	product ^a (% yield)	ref
	OR		OR OR	
1	R = H	1:1	6.2:1 (70–80%)	140
2	R = Me	1:1	2.8:1 (70-80%)	140
3	R = n-Bu	1:1	1.8:1 (70–80%)	140
4	R = 2-Bu	1:1	1.2:1 (70–80%)	140
5	R = H	1.3:1	5:1 (38-42%)	141
6	R = OH	1:1	4.9:1 (60–80%)	140
7	R = OMe $R = OEt$	1:1	2.8:1 (60–80%)	140
8 9	R = OEt R = O-i-Pr	1:1 1:1	2.6:1 (60-80%) 1.6:1 (60-80%)	140 140
10	C_6H_6	2:1	C_6H_5F (30–35%)	141
11		2:1		141
				
	10101			
			~~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	
			F F 6:1 (70%)	
12	^^	1.3:1	6:1 (70%)	1.41
14	(O)(O)	1.0.1		141
			· ·	
13	$Ph_2C=CH_2$	1.2:1	Ph ₂ C=CHF (70%)	144
14	1 112 0112	1.2:1	-F	
14	<i>A</i>	1.2.1	£	144
			(22%)	
			<b>√</b> ^F	
			(31%)	
15	$PhC(CH_3)C=CH_2$	1.2:1	PhC(CH ₂ F)=CH ₂ (30%)	144
	2004-		PhC(CHF ₂ )=CH ₂ (32%)	
16	OCOMe	1.2:1	Ŭ .f	144
			(70-88%)	
	(CH ₂ ) _n		(ĠH ₂ ),	
	n = 1−4 QR		ọr ọr	
	O(O)			
	<b>~ ~</b>		$\sim$ $\sim$ $\sim$	
17	R = H	1:0.7	8:1 (51%)	142
18	R = Me	1:0.7	3.5:1 (50%)	142
19 20	R = Et $R = i-Pr$	1:0.7	3:1 (50%)	142
20 21	R = t - P r R = H	1:0.7 1:1.6	1.8:1 (51%) 6.2:1 (72%) ^b	142 142
22	R = Me	1:1.6	$3.9:1 (83\%)^b$	142
23	R = Et	1:1.6	6.9:1 (79%) ^b	142
24	R = i - Pr	1:1.6	6.9:1 (71%) ^b	142
25	PhNHAc	1:1	2-FPhNHAc (75%) 4-FPhNHAc (11%)	142
26	$PhCH_3$	1.4:1	2-FPhCH ₃ (31%)	142
	*		3-FPhCH ₃ (4%)	
97	DLMO	4 4.4	4-FPhCH ₃ (8%)	100
27	PhNO ₂	1.4:1	2-FPhNO ₂ (6%) 3-FPhNO ₂ (16%)	139
			4-FPhNO ₂ (16%)	

rubidium sulfate led to the isolation of solid, relatively stable anionic hypofluorites, cesium fluoroxysulfate and rubidium fluoroxysulfate^{138,139} (eq 21). Cesium fluor-

$$M_2SO_4 + F_2 \rightarrow MSO_4F + MF$$
 (21)

M = Cs or Rb

oxysulfate was prepared easily in 2-5-g batches and stored in the cold for long periods without significant loss of activity. CsSO₄F has detonated occasionally on contact with metal surfaces, and should be handled in small quantities. The initial chemistry of CsSO₄F, described by Appelman, showed that CsSO₄F is espe-

TABLE XIII. Use of N-Fluoro Compounds for Fluorination

entry	substrate	reagent	product	% yield	ref
1	PhC(CO ₂ Et) ₂ -Na+	a	PhCF(CO ₂ Et) ₂	20-39	145
			PhCFHCO₂Et	0-5	
2	PhCH ₂ C(CO ₂ Et) ₂ -Na ⁺	a	PhCH ₂ CHFCO ₂ Et	30-33	145
3	CH ₃ C(CO ₂ Et) ₂ -Na ⁺	а	$CH_3CF(CO_2Et)_2$	17	145
4	CH(CO ₂ Et) ₂ -Na ⁺	а	F ₂ C(CO ₂ Et) ₂	5	145
5	PhMgBr	а	$\overset{ ext{HCF}( ext{CO}_2 ext{Et})_2}{ ext{PhF}}$	9 15	146
6	$c-C_6H_{11}MgBr$	a	$c-C_6H_{11}F$	11	146
7	CH ₃ (CH ₂ ) ₅ CH(MgBr)CH ₃	a	$CH_3(CH_2)_5CHFCH_3$	5	146
8			0	36-44	
0	, , ,	a	ļ , f	30-44	146
			$\smile$		
9	$\sim$	a	PhCHFCOPh	11-33	146
	k J				
	PhCH=CPh				
10	(CH ₃ ) ₂ CHCH=CCH ₂ CH(CH ₃ ) ₂	а	(CH ₃ ) ₂ CHCHFCOCH ₂ CH(CH ₃ ) ₂	23	146
10	3.2	a		20	170
11	PhC(CO ₂ Et) ₂ -Na ⁺	b	$PhCF(CO_2Et)_2$	81	147
12	$CH_3C(CO_2Et)_2$ - $Na^+$	b	$CH_3CF(CO_2Et)_2$	53	147
13	PhMgBr	c	PhF	50	147
14	o ⁻ +	c	он   _	60	147
	K.		€ F		
15	$p\text{-}\mathrm{CH_3C_6H_4SO_2N}\text{-}t\text{-}\mathrm{Bu}^-\mathrm{Li}^+$	d	$CH_3 \longrightarrow SO_2NH-r-Bu$	55	147
16	PhOMe ⁻ Li ⁺	d	3-FC ₆ H₄OMe	24	147
	OLi		0		
17	$\downarrow$	d	↓ _F	35	147
18	[PhCOCHCH(CH ₃ ) ₂ ]-K ⁺	d	PhCOCHFCH(CH ₃ ) ₂	81	147
19	$\mathrm{CH_{3}(CH_{2})_{13}MgBr}$	d	$\mathrm{CH_{3}(CH_{2})_{13}F}$	15	147
20	~ +	d	^ /	31	147
	VV.				
	(011) (011)		(OV) OTHER	<b>^</b> -	
21	$(CH_3)_2CNO_2^n-Bu_4N^+$	C	(CH ₃ ) ₂ CFNO ₂	83-87	147
22	[Ph ₂ CCO ₂ ] ²⁻ 2Li ⁺	d	$Ph_2CFCO_2H$	69	147
23	CH ₃	d	СН ₃   О	52	147
	N. W.		N CO		
	<b>↓</b> ○ <b>↓</b> ⟩-κ ⁺		→ F		
	cr Y N		CIN		
	Ph O		Ph U		
24	л-С ₆ Н _{13,} Н	e	л-С ₈ Н _{13,} н	71	148
	$\succ$		$\bowtie$		
	H Li		н́ Ъ		
25	Ph H	a	Ph H	76	148
20	$\succ$	e	$\bowtie$	10	140
	н́ Ъ		н́ `F		
26	n-C ₃ H ₇ n-C ₃ H ₇	e	n-C ₃ H ₇ n-C ₃ H ₇	85	148
	$\succ$	-	<b>→</b>	• •	
	Η΄ Li		н´ F		
27	(CH ₃ ) ₂ CHCH ₂ CH ₂ CH ₃	e	(CH ₃ ) ₂ CHCH ₂ CH ₂ , CH ₃	75	148
21	<u> </u>	· ·	<b>⊢</b>	10	140
	H Li		н́ F		
28	(CH ₃ ) ₂ CHCH ₂ CH ₂ CH ₃	e	(CH ₃ ) ₂ CHCH ₂ CH ₂ , CH ₃	75	148
	$\succ$		otag		
	Li H		F Н		
29	(CH ₃ ) ₂ CHCH ₂ CH ₂ CH ₃	e	(CH ₃ ) ₂ CHCH ₂ CH ₂ CH ₃	88	148
	H LI		H F	60	
30	(CH ₃ ) ₂ CHCH ₂ CH ₂ CH ₃	e	(CH ₃ ) ₂ CHCH ₂ CH ₂ CH ₃	83	148
	H		F H		
0.1	- 0.0		- 2.11	<del>7</del> 1	7.10
31	0 7 n-C4H9	e	/ 0 / n-C4H9	74	148
	₹ 11:		T		

TABLE XIII (Continued)

entry	substrate	reagent	product	% yield	ref
32	Li Li	е	F C	80	148

 aN -Fluoro-2-pyridone.  bN -Fluoro-N-neopentyl-p-toluenesulfonamide.  cN -Fluoro-N-tert-butyl-p-toluenesulfonamide.  dN -Fluoro-N-exo-2-norbornyl-p-toluenesulfonamide.  eN -tert-Butyl-N-fluorobenzenesulfonamide.

cially useful as a fluorination agent for aromatic substrates. Although presently unknown, CsSO₄¹⁸F should be as easily prepared as CH₃COO¹⁸F and thus, enhance the scope of radiofluorination methods.

Fluorinations using CsSO₄F are summarized in Table XII. Zupan used CsSO₄F reactions catalyzed by BF₃ in the fluorination of a wide range of aromatic derivatives (entries 1-6). Mixtures of fluoro isomers were obtained (entries 7-9).140-143 Electron-withdrawing substituents such as trifluoromethyl or carbomethoxy gave only small product conversions to the meta product (see entry 27). Aniline and N,N-dimethylaniline only gave tars at -20 °C. Zupan observed a direct relation between product yields and the ratio of cesium fluoroxysulfate to substrate for naphthalene derivatives (entries 5-9, 17-24). Appelman suggested the mechanism in Scheme IX to account for observations of both electrophilic and radical character in the reactions of CsSO₄F with aromatics. 138 Zupan also communicated that alkenes and enol acetates fluorinated at room temperature with CsSO₄F (entries 13-16).¹⁴⁴

## B. N-Fluoro Compounds

N-Fluoro-2-pyridone^{145,146} and various N-fluoro-N-alkylsulfonamides¹⁴⁷ have been shown to be useful fluorinating reagents, under very mild conditions. The results of fluorinations using these reagents are compiled in Table XIII. N-Fluoro-2-pyridone is prepared from the direct fluorination of 2-(trimethylsiloxy)-pyridine with molecular fluorine (eq 22). The driving

$$\begin{array}{c|c}
\hline
 & 5\% & F_2 \\
\hline
 & \text{in } N_2 \\
\hline
 & \text{In } N_2
\end{array} + \text{Me}_3 \text{SiF} \qquad (22)$$

force for fluorination with the pyridone may be rearomatization of the pyridine nucleus. Barnette prepared N-fluoro-N-alkylsulfonamides by treatment of N-alkylsulfonamides with elemental fluorine diluted in nitrogen. These compounds are more stable than N-fluoro-2-pyridone and provide better yields of fluorinated products as shown in Table XIII (entries 1 and 11, 3 and 12, 5 and 13).

## C. Halogen Monofluorides

An excellent, comprehensive review was recently published by Boguslavskaya¹² on the utility of halogen fluorides in organic synthesis. Rozen et al. ^{149–152} have used elemental fluorine to generate IF and BrF in situ. Table XIV is a compilation of the iodofluorination and bromofluorination products from various alkenes and alkynes. IF reacted with olefins regioselectively in Markovnikov fashion as shown by entries 12 and 13.

#### SCHEME X

$$R-C=C-H \xrightarrow{IF} R-C-CH \longrightarrow R-C-C-H \xrightarrow{F^-}$$

### SCHEME XI

$$PhC - CX_2R \longrightarrow \begin{bmatrix} F - C - C - H \\ F - K \end{bmatrix} \longrightarrow PhCF_2CFXR$$

The reaction proceeded by way of an iodonium ion and resulted in stereospecific anti addition (entries 18–21). The addition of BrF is less regioselective but the Markovnikov isomer predominated (entry 14). Because of the greater reactivity of BrF, a proton source such as ethanol or isopropyl alcohol was needed as a moderator. A drawback to the reagent is an accumulation of up to 10% of the solvent incorporated bromoether.

Both IF and BrF reacted with aliphatic alkynes, both terminal and nonterminal, to generate  $CF_2$  groups (entries 1–11).¹⁵⁰ The anticipated mechanism for the reaction is similar to that for olefins with a second molecule of IF adding across the halogenated  $\pi$  bond so as to generate the more stable carbocation at the fluorinated carbon (Scheme X).

Phenylacetylene (entry 4) gave in addition to the expected difluoro product, a trifluoro derivative. A phenonium ion was the postulated intermediate in this reaction as illustrated in Scheme XI. The formation of 1,1,2,2-tetrafluorodiphenylethane, obtained from diphenyl acetylene (entry 8), was attributed to the facile ionization of the intermediate benzylic iodide.¹⁵⁰

#### VIII. Conclusion

The synthetic applications for elemental fluorine have grown considerably in the past 25 years. No longer are perfluorinated hydrocarbons the major area of study in fluorine chemistry. The importance of selective fluo-

TABLE XIV. Iodofluorination and Bromofluorination Products

2 3 4 5	$CH_3(CH_2)_3C = CH$		product(s)	% yield	
3 4 5		$\mathbf{Br}$	$\mathrm{CH_{3}(CH_{2})_{3}CF_{2}CHBr_{2}}$	60	150
4 5	$CH_3(CH_2)_3C = CH$	I	$\mathrm{CH_{3}(CH_{2})_{3}CF_{2}CHI_{2}}$	80	150
5	$CH_3C \equiv CCH_3$	I	$CH_3CF_2CI_2CH_3$	85	150
	PhC≡CH	I	$PhCF_2CI_2H$	40	150
			PhCF ₂ CFIH	45	
	PhC≡CH	$\mathbf{Br}$	$PhCF = CBr_2$	40	150
G			$PhCF_2CBr_2H$	45	
U	$PhC = C(CH_2)_4 CH_3$	I	$PhCF_2CI = CH(CH_2)_3CH_3$	45	150
	. 274		PhCF ₂ CFI(CH ₂ ) ₄ CH ₃	20	
7	$PhC = C(CH_2)_4 CH_3$	$\mathbf{Br}$	PhCF ₂ CFBr(CH ₂ ) ₄ CH ₃	45	150
	PhC≡CPh	I	PhCF ₂ CF ₂ Ph	60	150
_			PhCF ₂ COPh	20	
			PhCOCOPh	10	
9	PhC≡CPh	$\mathbf{Br}$	PhCF ₂ CBr ₂ Ph	65	150
U	110-0111	ъ.	PhCOCOPh	15	100
10	PhC≡CCO₂Et	$\operatorname{Br}$	PhCF ₂ CBr ₂ CO ₂ Et	70	150
	MeOCOC≡CCO ₂ Me	Br	MeOCOCF ₂ CBr ₂ CO ₂ Me	70	150
	CH ₃ (CH ₂ ) ₅ CH=CH ₂	I	$CH_3(CH_2)_5CHFCH_2I$	70	150, 151
		Ī		70	149
13	CH ₃ (CH ₂ ) ₉ CH=CH ₂		CH ₃ (CH ₂ ) ₉ CHFCH ₂ I		
14	$CH_3(CH_2)_9CH=CH_2$	Br	CH ₃ (CH ₂ ) ₉ CHFCH ₂ Br	66	149, 152
	/		CH ₃ (CH ₂ ) ₉ CHBrCH ₂ F	18	
15	$(CH_3)_2C$ = $CH(CH_2)_2CH(CH_3)CH_2CHO$	I	(CH ₃ ) ₂ CFCH(I)(CH ₂ ) ₂ CHCH ₂ CH(CH ₃ )CH ₂ CHO	50	149
	$CH_3(CH_2)_9CF=CH_2$	<u>I</u>	$CH_3(CH_2)_9CF_2CH_2I$	75	149
17	$CH_3(CH_2)_9CHFCH_2I$	$_{\mathrm{Br}}$	$CH_3(CH_2)_9CF_2CH_2B_r$	40	149
18	$\sim$	I	Ι, Λ	45	149, 151
10		•	trans-	-10	110, 101
			£		
19		I	1	64	149, 151
19		1		04	143, 131
			trans-		
20		$_{\mathrm{Br}}$	Br	61	149, 152
	< '>				,
			trans- P		
21		I	F	45	149, 151
			7 ì		
22	trans-PhCH=CHPh	I	meso-PhCHFCHFPh	42	149
44	tiuits-Fileti—CIIFii	1	dl-PhCHFCHFPh	42	143
00	cis-PhCH=CHPh	I	meso-PhCHFCHFPh		149
23	cis-rncn—cnrn	1		15	149
2.4	DI CIT CITE	-	dl-PhCHFCHFPh	65	1.00 150
	trans-PhCH=CHPh	Br	erythro-PhCHFCHBrPh	84	149, 152
	cis-PhCH=CHPh	Br	threo-PhCHFCHBrPh	65	149, 152
26	(Z)-PhC(CH ₃ )=CHPh	I	threo-PhC(CH ₃ )FCHFPh	75	149
			erythro-PhC(CH ₃ )FCHFPh	15	
27	trans-p-CH ₃ COC ₆ H ₄ CH=CHPh	I	$p ext{-}\mathrm{CH_3COC_6H_5CHFCHFPh}$	75	149
			erythro:threo= 9:1		
28	$MeOCOCH_2CH=CH_2$	$\mathbf{Br}$	MeOCOCH ₂ CHFCH ₂ Br	50	149, 152
	-		$MeOCOCH_2CHBrCH_2F$	30	-
90		D-	~ ·0		1/0 150
29		$\mathbf{Br}$		90	149, 152
			F Br		
30	~°~°	$\operatorname{Br}$	~°~°	50	149, 152
			Br		
			l F		
31	cholesterol acetate	I	74	65	149
01	cholesteror acetate	•	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00	110
			Aco		
			F		
		_	1		
32	cholesterol acetate	Br	Juny,	15	149
			$\downarrow\downarrow\downarrow$		
			AcO F		
			Br		
			Juna	55	149
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
			^ ^ /		
			AcO L		
			AcO Br F		
33	progesterone	Br	Br   F	60	149
33	progesterone	Br	Acor #p	60	149
33	progesterone	Br	Br   F	60	149
33	progesterone	Br	Br   F	60	149

rination methods and biologically active fluorinated compounds are gaining increasing recognition in the scientific community, with special emphasis on radiolabeled fluorinated compounds (as medicinal tracers), fluorinated enzyme inhibitors, pharmaceutically useful compounds, and pesticides. Selectivity and product yields are no longer the exception to the rule, and are becoming more commonplace. The exploration of moderating reagents such as acetyl hypofluorite, cesium fluoroxysulfate, and halogen monofluorides are further extending the applications of fluorine to the production of new compounds that in the past years have been elusive.

Acknowledgments. The helpful comments of Dr. S. Rozen and Dr. S. G. Levine are deeply appreciated.

Registry No. F₂, 7782-41-4.

## References

- Moissan, H. C.R. Hebd. Seances Acad. Sci. 1886, 102, 1543.
   Bockemuller, W. Justus Liebigs Ann. Chem. 1933, 506, 20.
   Barton, D. H. R.; Hesse, R. H.; Markwell, R. E.; Pechet, M.
- M.; Rozen, S. J. Am. Chem. Soc. 1976, 98, 3036. Grakauskas, V. Intra-Sci. Chem. Rep. 1971, 5, 85. Lagow, R. T.; Margrave, J. L. Prog. Inorg. Chem. 1979, 26,
- Rozen, S.; Filler, R. Tetrahedron 1985, 41, 1111.
- Gerstenberger, M. R. C.; Haas, A. Angew. Chem., Int. Ed. Engl. 1981, 20, 647.
- Tedder, J. M. Adv. Fluor. Chem. 1961, 2, 104.
- (9) Haas, A.; Lieb, M. Chimia 1985, 39, 134.
  (10) Stephens, R.; Tatlow, J. C. Quart. Rev. 1962, 16, 44.
  (11) Vyplel, H. Chimia 1985, 39, 304.
- (12) Boguslavskaya, L. S. Russ. Chem. Rev. (Engl. Transl.) 1984,
- Cacace, F.; Giacomello, P.; Wolf, A. P. J. Am. Chem. Soc. 1980, 102, 3511.
- (14) Sams, L. C.; Reames, T. A.; Durrance, M. A. J. Org. Chem. 1978, 43, 2273.
- (15) Humiston first used various diluents to moderate the reactivity of fluorine. Humiston, B. J. Phys. Chem. 1919, 23,
- (16) Lerman, O.; Tor, Y.; Hebel, D.; Rozen, S. J. Org. Chem. 1984,
- (17) Merritt, R. F.; Johnson, F. A. J. Org. Chem. 1966, 31, 1859.
  (18) Merritt, R. F. J. Org. Chem. 1966, 31, 3871.
  (19) Merritt, R. F.; Stevens, T. E. J. Am. Chem. Soc. 1966, 88,

- (20) Merritt, R. F. J. Am. Chem. Soc. 1967, 89, 609.
  (21) Rozen, S.; Lerman, O.; Kol, M.; Hebel, D. J. Org. Chem. 1985,
- (22) Barton, D. H.; Hesse, R. H.; Jackman, G. P.; Ogunkoya, L.;
- Pechet, M. M. J. Chem. Soc., Perkin Trans. 1 1974, 739.
   Barton, D. H. R.; Lister-James, J.; Hesse, R. H.; Pechet, M. M.; Rozen, S. J. Chem. Soc., Perkin Trans. 1 1982, 1105.
   Yakubovich, A. Ya.; Rozenshtein, S. M.; Ginsburg, V. A.; Smirnov, K. M. Zh. Obsch. Khim. 1966, 36, 150.
- (25) Cech, D.; Holy, A. Collect. Czech. Chem. Commun. 1976, 41,
- (26) Cech, D.; Beerbaum, H.; Holy, A. Collect. Czech. Chem. Commun. 1977, 42, 2694.

- (27) Diksic, M.; Di Raddo, P. Tetrahedron Lett. 1984, 25, 4885.
  (28) Meinert, H.; Cech, D. Z. Chem. 1972, 12, 292.
  (29) Kobayashi, Y.; Kumadaki, I.; Yamashita, T. Heterocycles 1982, 17, 429.
  (30) Cech, D.; Hein, L.; Wuttke, R.; Janta-Lipinski, M. V.; Otto,
- A.; Langen, P. Nucleic Acids Res. 1975, 2, 2177.
- (31) Cech, D.; Meinert, H.; Etzold, G.; Langen, P. J. Prakt. Chem. 1973, 315, 149.
- (32) Cech, D.; Herrmann, G.; Holy, A. Nucleic Acids Res. 1977,
- (33) Kumadaki, I.; Nakazawa, M.; Kobayashi, Y.; Muruyama, T.;
- (36) Kumadaki, I.; Nakazawa, M.; Kobayashi, Y.; Muruyama, T.; Honjo, M. Tetrahedron Lett. 1983, 24, 1055.
   (34) Schwarz, B.; Cech, D.; Holy, A.; Skoda, J. Collect. Czech. Chem. Commun. 1980, 45, 3217.
   (35) Fowler, J. S.; Finn, R. D.; Lambrecht, R. M.; Wolf, A. P. J. Nucl. Med. 1973, 14, 63.
   (36) Koning, J.; Schonherr, M.; Wolter, P.; Wunsche, M.; Cech, D. Z. Chem. 1984, 24, 252.
- Z. Chem. 1984, 24, 253
- Haas, A.; Kortmann, D. Chem. Ber. 1981, 114, 1176. Barton, D. H. R.; Hesse, R. H.; Toh, H. T.; Pechet, M. M. J. Org. Chem. 1972, 37, 329.

- (39) Kobayashi, Y.; Kumadaki, I.; Nakazato, A. Tetrahedron Lett. 1980, 21, 4605. The assignment of configuration of 5-fluoro-6-alkoxy-5,6-dihydrouracil reported in this paper is reported by Robins. 42 Visser et al. 41 report the presence of both cisand trans-5-fluoro-6-acetoxy-5,6-dihydrouracil. Diksic, et al. (Diksic, M.; Farrokhad, S.; Colebrook, L. D. Can. J. Chem. 1986, 64, 424) have also examined the stereochemistry of this reaction.
- (40) Shiue, C.-Y.; Wolf, A. P.; Friedkin, M. J. Labelled Compd. Radiopharm. 1984, 21, 865.
- (41) Visser, G. W. M.; Boele, S.; Halteren, B. W. v.; Knops, G. H. J. N.; Herocheid, J. D. M.; Brinkman, G. A.; Hoekstra, A. J.
- Org. Chem. 1986, 51, 1466.
  (42) Robins, M. J.; MacCross, M.; Naik, S. R.; Ramani, G. J. Am.
- Chem. Soc. 1976, 98, 7381.

  (43) Shiue, C.-Y.; Wolf, A. P. J. Labelled Compd. Radiopharm. 1981, 18, 1059.
- (44) Adduct is questionable according to the experimental procedure. The hydroxy group is assumed to come from the hydrolysis of the acetate group, although no water was made available
- (45) Kvasyuk, E. I.; Mikhalopulo, I. A.; Pupeiko, N. E.; Tsekh, D.
- Zh. Org. Khim. 1983, 19, 462. Tsushima, T.; Kawada, K.; Tsuji, T.; Misaki, S. J. Org. Chem. 1**982**, *47*, 1107
- (47) Purrington, S. T.; Lazaridis, N. V.; Bumgardner, C. L. Tet-
- rahedron Lett. 1986, 27, 2715. (48) Purrington, S. T.; Lazaridis, N. V.; Bumgardner, C. L., un-
- (48) Purrington, S. 1.; Lazaridis, N. V.; Bumgardner, C. L., unpublished results.
  (49) Rozen, S.; Lerman, O. J. Am. Chem. Soc. 1979, 101, 2782.
  (50) Ido, T.; Wan, C.-N.; Fowler, J. S.; Wolf, A. P. J. Org. Chem. 1977, 42, 2341.
  (51) Shiue, C.-Y.; Salvadori, P. A.; Wolf, A. P.; Fowler, J. S.; MacGregor, R. R. J. Nucl. Med. 1982, 23, 899.
  (52) Fowler, J. S.; Mac Gregor, R. R.; Wolf, A. P.; Farrell, A. A.; Korletzon, K. L. Buth, T. L. J. Nucl. Med. 1981, 22, 276.

- Karlstrom, K. I.; Ruth, T. J. J. Nucl. Med. 1981, 22, 376.
  Barrio, J. R.; MacDonald, S.; Robinson, G. D., Jr.; Najafi, A.; Cook, J. S.; Kuhl, D. E. J. Nucl. Med. 1981, 22, 372.
  Ido, T.; Wan, C.-N.; Casella, V.; Fowler, J. S.; Wolf, A. P.; Reivich, M.; Kuhl, D. E. J. Labelled Compd. Radiopharm. 1**978**, *14*, 175.
- Merritt, R. F. J. Org. Chem. 1967, 32, 4124.

- (56) McEwen, W. E.; Guzikowski, A. P.; Wolf, A. P. J. Fluorine Chem. 1984, 25, 169.
  (57) Merritt, R. F.; Johnson, F. A. J. Org. Chem. 1967, 32, 416.
  (58) Patrick, T. B.; Scheibel, J. J.; Cantrell, G. L. J. Org. Chem. 1981, 46, 3917.
  (59) Leroy, J.; Wakselman, C. J. Chem. Soc. Perkin Trans. 1 1978, 1224

- (60) Patrick, T. B.; Flory, P. A. J. Fluorine Chem. 1984, 25, 157.
  (61) Merritt, R. F. J. Org. Chem. 1967, 32, 1633.
  (62) Ruppert, I. Tetrahedron Lett. 1980, 21, 4893.
  (63) Jewett, D. M.; Ehrenkaufer, R. E. J. Fluorine Chem. 1983,
- (64) Grakauskas, V.; Baum, K. J. Org. Chem. 1970, 35, 1545.
  (65) Cohen, Z.; Keinen, E.; Mazur, Y.; Varkony, T. H. J. Org.
- (66) Gal, C.; Rozen, S. Tetrahedron Lett. 1985, 26, 2793.
  (67) Gal, C.; Rozen, S. Tetrahedron Lett. 1984, 25, 449.
  (68) Rozen, S.; Gal, C.; Faust, Y. J. Am. Chem. Soc. 1980, 102, 200.

- (69) Gal, C.; Ben-Shoshan, G.; Rozen, S. Tetrahedron Lett. 1980,

- 21, 5067.
   Barton, D. H. R. Pure and Appl. Chem. 1977, 49, 1241.
   Rozen, S.; Gal, C. J. Fluorine Chem. 1985, 27, 143.
   Rozen, S.; Ben-Shushan, G. Tetrahedron Lett. 1984, 25, 1947.
   Barton, D. H. R.; Hesse, R. H.; Markwell, R. E.; Pechet, M. M.; Toh, H. T. J. Am. Chem. Soc. 1976, 98, 3034.
   Gal, C.; Rozen, S. J. Fluorine Chem. 1982, 20, 689.
   Alker, D.; Barton, D. H. R.; Hesse, R. H.; Lister-James, J.; Markwell, R. E.; Pechet, M. M.; Rozen, S.; Takeshita, T.; Toh, H. T. Nouv. J. Chim. 1980, 4, 239.
   Olah, G. A.; Halpern, Y.; Sten, J.; Mo, Y. K. J. Am. Chem. Soc. 1971, 93, 1251.
- Soc. 1971, 93, 1251.
  (77) Olah, G. A.; Prakash, G. K. S.; Krishnamurthy, V. V. J. Org.

- Chem. 1983, 48, 5116.
  Christe, K. O. J. Fluorine Chem. 1983, 22, 519.
  Christe, K. O. J. Fluorine Chem. 1984, 25, 269.
  Cartwright, M. M.; Woolf, A. A. J. Fluorine Chem. 1984, 25,
- (81) Hehre, W. J.; Hiberty, P. C. J. Am. Chem. Soc. 1974, 96,
- (82) Cacace, F.; Wolf, A. P. J. Am. Chem. Soc. 1978, 100, 3639.
  (83) Grakauskas, V. J. Org. Chem. 1970, 35, 723.
  (84) Misaki, S. J. Fluorine Chem. 1981, 17, 159.
- (85)Misaki, S. J. Fluorine Chem. 1982, 21, 191
- Firnau, G.; Chirakal, R.; Garnett, E. S. J. Nucl. Med. 1984, (86)
- Adam, M. J.; Ruth, T. J.; Jivan, S.; Pate, B. D. J. Fluorine Chem. 1984, 25, 329. (87)

- (88) Speranza, M.; Shiue, C.-Y.; Wolf, A. P.; Wilbur, D. S.; An-
- gelini, G. J. Fluorine Chem. 1985, 30, 97. Adam, M. J.; Berry, J. M.; Hall, L. D.; Pate, B. D.; Ruth, T. J. Can. J. Chem. 1983, 61, 658. (89)
- (90) Di Raddo, P.; Diksic, M.; Jolly, D. J. Chem. Soc., Chem. Commun. 1984, 159.
- (91) Adam, M. J.; Pate, B. D.; Ruth, T. J.; Berry, J. M.; Hall, L. D. J. Chem. Soc., Chem. Commun. 1981, 733.
- (92) Naumann, D.; Lange, H. J. Fluorine Chem. 1983, 23, 37.
  (93) Rozen, S.; Brand, M. J. Org. Chem. 1981, 46, 733.
  (94) Kollonitsch, J.; Marburg, S.; Perkins, L. M. J. Org. Chem. 1976, 41, 3107.
- (95) Azeem, M.; Brownstein, M.; Gillespie, R. J. Can. J. Chem. 1969, 47, 4159.
- (96) Eremenko, L. T.; Natsibullin, F. Ya.; Nesterenko, G. N. Izv. Akad. Nauk SSSR 1968, 1362.
- (97) Hesse, R. Isr. J. Chem. 1978, 17, 60.
  (98) Patrick, T. B.; Cantrell, G. L.; Inga, S. J. Org. Chem. 1980, 5. 1409.
- (99) Patrick, T. B.; Cantrell, G. L.; Chang, C.-Y.; J. Am. Chem. Soc. 1979, 101, 7434.
   (100) Middleton, W. J.; Bingham, E. M. J. Am. Chem. Soc. 1980, 102, 4846.
- (101) Cady, G. H.; Kellog, K. B. J. Am. Chem. Soc. 1953, 75, 2501.
   (102) Rozen, S.; Lerman, O.; Kol, M. J. Chem. Soc., Chem. Com-
- mun. 1981, 443.

- mun. 1981, 443.
  (103) Lerman, O.; Tor, Y.; Rozen, S. J. Org. Chem. 1981, 46, 4629.
  (104) Rozen, S.; Lerman, O. J. Am. Chem. Soc. 1979, 101, 2782.
  (105) Rozen, S.; Lerman, O. J. Org. Chem. 1980, 45, 672.
  (106) Rozen, S.; Menahem, Y. J. Fluorine Chem. 1980, 16, 19.
  (107) Rozen, S.; Menahem, Y. Tetrahedron Lett. 1979, 725.
  (108) Lerman, O.; Rozen, S. J. Org. Chem. 1980, 45, 4122.
  (109) Barnette, W. E.; Wheland, R. C.; Middleton, W. J.; Rozen, S. J. Org. Chem. 1985, 50, 3698. J. Org. Chem. 1985, 50, 3698.
- (110) Mulholland, G. K.; Ehrenkaufer, R. E. J. Org. Chem. 1986, 51, 1482.
- (111) Fowler, J. S.; Shiue, C.-Y.; Wolf, A. P.; Salvadori, P. A.; MacGregor, R. R.; J. Labelled Compd. Radiopharm. 1982, 19,
- (112) Jewett, D. M.; Potocki, J. F.; Ehrenkaufer, R. E. Synth.
- Commun. 1984, 14, 45.
  (113) Jewett, D. M.; Potocki, J. F.; Ehrenkaufer, R. E. J. Fluorine Chem. 1984, 24, 477.
- (114) Diksic, M.; Jolly, D. Int. J. Appl. Radiat. Isot. 1983, 34, 893.
  (115) Adam, M. J. Chem. Eng. News 1985, 63(7), 2.
  (116) Hebel, D.; Lerman, O.; Rozen, S. J. Fluorine Chem. 1985, 30,

- (117) Appelman, E. H.; Mendelsohn, M. H.; Kim, H. J. Am. Chem.
- (111) Appellian, E. H., Melicisolin, M. L., Tan, A. Soc. 1985, 107, 6515.
  (118) Adam, M. J. J. Chem. Soc., Chem. Commun. 1982, 730.
  (119) Adam, M. J.; Pate, B. D.; Nesser, J.-R.; Hall, L. D. Carbohydr. Res. 1983, 124, 215.

- (120) Lerman, O.; Rozen, S. J. Org. Chem. 1983, 48, 724.
  (121) Visser, G. W. M.; Haltern, B. W. v.; Herscheid, J. D. M.; Brinkman, G. A.; Hoekstra, A. J. Chem. Soc., Chem. Commun. 1984, 655.
- (122) Chirakal, R.; Firnau, G.; Couse, J.; Garnett, E. S. Int. J. Appl.

- (123) Rozen, S.; Brand, M. Synthesis 1985, 665. (124) Shiue, C.-Y.; Wolf, A. P. J. Nucl. Med. 1985, 26, P129. (125) Kosower, E. M.; Hebel, D.; Rozen, S.; Radkowski, A. E. J.
- Org. Chem. 1985, 50, 4152. Shiue, C.-Y.; Wolf, A. P. J. Fluorine Chem. 1986, 31, 255. Visser, G. W. M.; Bakker, C. N. M.; Halteren, B. W. v.;
- Herscheid, J. D. M.; Brinkman, G. A.; Hoekstra, A. J. Org.
- Chem. 1986, 51, 1886. Van Rijn, C. J. S.; Herscheid, J. D. M.; Visser, G. W. M.; Hoekstra, A. Int. J. Appl. Radiat. Isot. 1985, 36, 111.
- (129) Ehrenkaufer, R. E.; Potoki, J. F.; Jewett, D. M. J. Nucl. Med.
- 1984, 25, 333.
  (130) Bida, G. T.; Satyamurthy, N.; Barrio, J. R. J. Nucl. Med. 1984, 25, 1327.
- (131) Fifolt, M. J.; Olezak, R. T.; Mundhenke, R. F.; Bieron, J. F. J. Org. Chem. 1985, 50, 4576.

- J. Org. Chem. 1985, 50, 4576.
  (132) Johri, K. K.; DesMarteau, D. D. J. Org. Chem. 1983, 48, 242.
  (133) Levy, J.; Sterling, D. J. Org. Chem. 1985, 50, 5615.
  (134) Feiring, A. E. J. Org. Chem. 1985, 50, 3269.
  (135) Speranza, M.; Shuie, C.-Y.; Wolf, A. P.; Wilbur, D. S.; Angelini, G. J. Chem. Soc., Chem. Commun. 1984, 1448.
  (136) Chauvette, P.; Jones, D.; Jones, N.; Saurtzendruber, J.; Ward, L. S.; P. C. S. Abstractor Preparate Wilster Flyancing.
- (136) Chauvette, P.; Jones, D.; Jones, N.; Saurtzendruder, J.; Ward, J. S.; Rozen, S. Abstracts of Papers, 7th Winter Fluorine Conference, Orlando, FL, 1985; Abstract 52.
  (137) Fichter, F.; Humpert, K. Helv. Chim. Acta 1926, 9, 602.
  (138) Ip, D. P.; Arthur, C. D.; Winans, R. E.; Appelman, E. H. J. Am. Chem. Soc. 1981, 103, 1964.
  (139) Appelman, E. H.; Basile, L. J.; Hayatsu, R. Tetrahedron

- 1984, 40, 189.
- (140) Stayber, S.; Zupan, M. J. Chem. Soc., Chem. Commun. 1981,

- (141) Stavber, S.; Zupan, M. J. Fluorine Chem. 1981, 17, 597.
  (142) Stavber, S.; Zupan, M. J. Org. Chem. 1985, 50, 3609.
  (143) Patrick, T. B.; Darling, D. J. Org. Chem. 1986, 51, 3242.
  (144) Stavber, S.; Zupan, M. J. Chem. Soc., Chem. Commun. 1981,
- (145) Purrington, S. T.; Jones, W. A. J. Org. Chem. 1983, 48, 761.
  (146) Purrington, S. T.; Jones, W. A. J. Fluorine Chem. 1984, 26,
- (147) Barnette, W. E. J. Am. Chem. Soc. 1984, 106, 452.
- (148) Lee, S. H.; Schwartz, J. J. Am. Chem. Soc. 1986, 108, 2445.
  (149) Rozen, S.; Brand, M. J. Org. Chem. 1985, 50, 3342.
  (150) Rozen, S.; Brand, M. J. Org. Chem. 1986, 51, 222.
  (151) Rozen, S.; Brand, M. Tetrahedron Lett. 1980, 21, 4543.

- (152) Rozen, S.; Brand, M. J. Fluorine Chem. 1982, 20, 419.